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Abstract 

Background: Chronic fatigue syndrome (CFS) is one of the most important causes of disability among 

adolescents while limited knowledge exists on genetic determinants underlying disease 

pathophysiology. 

 

Methods: We analyzed deregulated immune-gene modules using Pathifier software on whole blood 

gene expression data (29 CFS patients, 18 controls).  Deconvolution of immune cell subtypes based 

on gene expression profile was performed using CIBERSORT. Supervised consensus clustering on 

pathway deregulation score (PDS) was used to define CFS subgroups. Associations between PDS and 

immune, neuroendocrine/autonomic and clinical markers were examined. The impact of plasma 

norepinephrine level on clinical markers over time was assessed in a larger cohort (91 patients). 

 

Results: A group of 29 immune-gene sets was shown to differ patients from controls and detect 

subgroups within CFS. Group 1P (high PDS, low norepinephrine, low naïve CD4+ composition) had 

strong association with levels of serum C-reactive protein and Transforming Growth Factor-beta. 

Group 2P (low PDS, high norepinephrine, high naïve CD4+ composition) had strong associations with 

neuroendocrine/autonomic markers. The corresponding plasma norepinephrine level delineated 91 

patients into two subgroups with significant differences in fatigue score. 

 

Conclusion: We identified 29 immune-gene sets linked to plasma norepinephrine level that could 

delineate CFS subgroups. Plasma norepinephrine stratification revealed that lower levels of 

norepinephrine were associated with higher fatigue. Our data suggests potential involvement of neuro-

immune dysregulation and genetic stratification in CFS. 
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Introduction 

The Chronic Fatigue Syndrome (CFS) is characterized by disproportional fatigue after exertions, 

musculoskeletal pain, cognitive impairment and other symptoms. The prevalence of CFS is expected 

to be between 0,006%-3% 1 and the disease affects more females than males. CFS is a major threat 

towards adolescent health, with strong negative impact on academic development and family life 2. 

 

The aetiology of CFS is unknown; however, several studies have linked its pathophysiology to 

perturbation in the immune system including altered function of B cells, Tregs, neutrophils and NK 

cells 3,4and altered levels of certain cytokines associated with disease duration 5. Recently, we identified 

subtle downregulation of genes encoding proteins that function in adaptive immune responses and 

upregulation of genes belonging to innate responses in whole blood mRNA of young CFS patients 

compared with healthy controls 6. Additionally, CFS is characterized by neuroendocrine alterations 

including enhanced sympathetic nervous activity, increased plasma levels of catecholamines and 

attenuation of the hypothalamus-pituitary-adrenal axis (HPA-axis) 7-9  

 

Increasing evidences in systems biology have suggested that studying higher degree of molecular 

interactions might shed light on the underlying mechanisms of complex diseases 10,11. Approaches 

studying groups of genes that are functionally related could help to identify co-expression modules or 

elucidate perturbed biological networks. Such analyses incorporate quantitative profiles of each 

molecule into higher order of their interactive map such as gene sets, protein networks, or signaling 

pathways. In turn, associations between deregulated modules/networks and clinical symptoms could 

be the effective tools to generate hypotheses concerning disease mechanism. Pathway-based genomic 

models have been demonstrated to give better indicators of prognosis for a number of diseases 12,13. 

From available gene expression data, pathway-based analysis such as Pathifier can identify deregulated 

pathways or disrupted gene network using measurement of pathway deregulated scoring (PDS).  
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Generally, there is a lack of association studies between clinical and genomic features in CFS. Another 

important point is the heterogeneity regarding the CFS diagnostic criteria 14-16. These criteria may be 

related to different subtypes of the disease 17. We hypothesized that identification of differential gene 

expression modules could help to delineate subgroups of CFS. 

 

Therefore, the aims of the present study were two-fold: 1) To identify immune deregulation at the gene 

set level in adolescent CFS by an exploratory computational approach making use of whole blood gene 

expression data; and 2) To delineate subgroups in a cohort of adolescent CFS patients by examining 

clusters of immune gene module expression. 

 

Methods 

Study design 

Adolescent CFS patients (n=120, mean age 14.96 years, 62 % females) and healthy controls (n=68, 

mean age 14.65 years, 59 % females) were recruited to the NorCAPITAL-project (The Norwegian 

Study of Chronic Fatigue Syndrome in Adolescents: Pathophysiology and Intervention Trial; 

ClinicalTrials ID: NCT01040429), a cross-sectional study of CFS patients and healthy adolescents 

combined with a randomized controlled trial (RCT) of low-dose clonidine vs. placebo in the CFS group 

18. Clonidine is an alpha-adrenoreceptor agonist which reduces neural sympathetic outflow, thereby 

lowering heart rate, blood pressures and total peripheral resistance19. In NorCAPITAL, CFS patients 

allocated to the active treatment arm of the RCT received oral clonidine capsules 25 µg or 50 µg twice 

daily, respectively, for body weight below/above 35 kg. CFS patients were summoned for 

investigations at three time-points: Baseline (prior to treatment allocation in the RCT), at 8 weeks 

(during treatment), and at 30 weeks (after treatment discontinuation). Healthy controls were seen only 

once. Ethical approval of the study was granted by the Regional Committee for Ethics in Medical 

Research, the Norwegian Data Inspectorate, the Norwegian Directorate of Health, and the Norwegian 

Medicines Agency.  
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Recruitment  

Details of the recruitment procedure and inclusion/exclusion criteria are described elsewhere 18. 

Briefly, all hospital pediatric departments in Norway (n=20), as well as primary care pediatricians and 

general practitioners, were invited to refer CFS patients aged 12-18 years consecutively to our study 

center. A standard form required the referral unit to confirm the result of clinical investigations 

considered compulsory to diagnose pediatric CFS according to national Norwegian recommendations 

(pediatric specialist assessment, comprehensive hematology and biochemistry analyses, chest x-ray, 

abdominal ultrasound, and brain MRI). Also, the referring units were required to confirm that the 

patient a) was unable to follow normal school routines due to fatigue; b) was not permanently 

bedridden; c) did not have any concurrent medical or psychiatric disorder that might explain the 

fatigue; d) did not experience any concurrent demanding life event (such as parents’ divorce) that 

might explain the fatigue; e) did not use pharmaceuticals (including hormone contraceptives) regularly. 

The patients were not screened for childhood trauma experiences. Patients considered eligible to this 

study were summoned to a clinical encounter at our study center after which a final decision on 

inclusion was made.  In agreement with clinical guidelines, we applied a ‘broad’ case definition of 

CFS, requiring three months of unexplained, disabling chronic/relapsing fatigue of new onset 20. We 

did not require that patients meet any other accompanying symptom criteria.  A group of healthy 

controls having the same distribution of sex and age as the CFS patients was recruited from local 

schools. 

 

Immune, neuroendocrine/autonomic, and clinical markers 

Serum level of C-reactive protein, high-sensitive assay (hsCRP) was analyzed by particle-enhanced 

immunoturbidimetric assay (CRP Latex HS, Roche Diagnostics, Indianapolis, IN, USA). Plasma 

levels of Transforming Growth Factor b (TGF-b) including three isoforms of TGF-β (TGF-β1, TGF-

β2 and TGF-β3) was analyzed using Bio-Plex Human TGF-β 3-plex (Bio-Rad Laboratories Inc., 

Hercules, CA, USA) and performed by the Bio-Plex200 system. Neuroendocrine/autonomic markers 

(plasma and urine levels of norepinephrine and epinephrine) were collected as previously described 

and measured by the use of high performance liquid chromatography (HPLC) with a reversed-phase 
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column and glassy carbon electrochemical detector (Antec, Leyden Deacade II SCC, Zoeterwoude, 

The Netherlands) 6,21. The low frequency:high frequency (LF/HR) ratio of supine heart rate variability 

is an index of sympathetic versus parasympathetic heart rate control; it was calculated from 4 minutes 

ECG recordings of horizontal-laying participants connected to the Task Force Monitor (Model 3040i, 

CN Systems Medizintechnik, Graz, Austria) as described elsewhere22. The clinical symptom of fatigue 

(a main complaint among CFS patients) was charted by the Chalder Fatigue Questionnaires (CFQ); a 

validated instrument consisting of 11 items scored on 0-3 Likert scales 18. Global functional ability 

was assessed by the Functional Disability Inventory (FDI), consisting of 15 items scored on 0-4 Likert 

scales 18. 

 

Whole blood gene expression data 

Random sampling of 29 CFS patients and 18 healthy controls at time of inclusion (baseline) with 

similar demographical and clinical parameters compared to the NorCapital cohort were used for whole 

blood RNA extraction 6. These two groups were homogenous for age and gender (Table 1). 

All RNAs with RIN-value > 7 were used for gene expression measurements, as described elsewhere 6. 

After removing globin and ribosomal RNAs, mRNA sequencing was performed on the Illumina HiSeq 

2500 according to the protocol of TruSeq Stranded mRNA single-end sequencing. Normalization of 

gene expression data from this whole blood was performed using RUVSeq and differential expression 

analysis was done using DESeq2 as described previously 6. 

 

Gene sets and pathway database 

Gene sets were downloaded from the Molecular Signatures Database (MSigDB version 5.0) from the 

C7-immunologic collection consisting of 4872 gene sets. This C7 collection contains list of gene sets 

that are known to be related to the immune system from 389 published transcriptomic studies of 

immunologic cell states and immune dysregulation in mouse and human (254 studies in mouse and 

135 in human). It was built based on manually annotated gene sets from a wide range of cell states, 

experimental evidences and genetic alteration that represent cell types, states, and perturbations within 
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the immune system 22. The name of each gene set is context-specific with direction of change for each 

group of genes per experiment.  

 

Bioinformatics and statistical analysis 

All computational analyses were performed in the R environment of version 3.4.2 (2017-09-28) and 

with Graphpad Prism version 6 (GraphPad Software, CA, USA). Two-sided p-values less than 0.05 

were considered statistically significant.  

 

Pathway analysis  

Pathway Deregulation Score (PDS) for a given pathway or gene set based on gene expression data was 

computed by Pathifier Bioconductor package 1.16.0 23 implemented in R. The Pathifier method 23 uses 

pathway annotation resources such as the Molecular Signatures Database MSigDB 24 to estimate the 

PDS of each pathway per sample. MSigDB contains 17786 gene sets spanning across canonical 

pathways, biological processes and interactive gene sets of the immune system. These gene sets are 

divided into 8 main collections and several sub-collections based on database types, ontology resources 

or positional annotation. From the normalized gene expression data, Pathifier transformed per gene 

quantification into pathway-level measurement and compared their deregulated profile with the 

corresponding pathway profile of the healthy controls. PDS was ranged from 0 to 1 in which higher 

values of PDS reveal higher degree of deregulation compared to reference (the healthy controls group).  

The normalized RNA-Seq data consisting of 20729 genes from 47 samples (29 patients and 18 

controls) was used as input for Pathifier. Output of Pathifier analysis was a matrix of which rows 

represented the pathways or gene sets and columns were the corresponding PDS of each pathway/gene 

set per sample. 

 

Visualization of the deregulated gene sets 
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Unsupervised clustering on Euclidean distance of PDS values was constructed using Ward’s 

agglomerative linkage method (ward.D2) and visualized as a heatmap by hierarchical clustering using 

the heatmap3 package version 1.1.1 25. To avoid individual deviation in the cluster, samples that had 

technical errors such as PDS clustered together in the reverse way compared with all the remaining 

patients/controls or lacked measurement in several pathways were considered as outliers/ extreme 

cases (Fig S1).  

 

Deconvolution of immune cell subtypes from gene expression data 

Characterization of the immune cell subtype composition from whole blood gene expression was 

performed using CIBERSORT software with the inclusion of LM22 background containing 22 

immune cell types and 1000 permutation for statistical estimation 26. 

 

Consensus clustering of the deregulated gene sets  

Classification of the top deregulated gene sets of 43 samples (26 patients, 17 controls after removing 

the extreme cases) into clusters was identified using ConsensusClusterPlus package version 1.40.0  27. 

Consensus clustering of the deregulated gene sets from the analysis on C7 MSigDB was performed by 

three different clustering algorithms (Hierarchical clustering, K-means, Partition around medoids 

(PAM)) with 80% item resampling, 80% gene resampling, 100 replications and an evaluation of two 

to six clusters using Euclidean distance. Dissimilarities between each object in each cluster were 

inspected by measuring the Silhouette value using the Cluster package version 2.0.6 28.  

 

Establishment of the three gene set clusters and their centroids 

The best clustering algorithm chosen was K-means (K=3) following Silhouette values and output of 

ConsensusClusterPlus. Results for the hierarchical clustering and PAM are not shown, but these results 

can be reproduced with the code provided in https://github.com/chinhbn/pathifier. The three centroids 

were the centers of three clusters computed by K-means clustering (K=3) above. Summary of the best 
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consensus clustering result was performed by an unsupervised clustering employing ward.D method 

and Euclidean distance of the centroids using pheatmap package version 1.0.8 29.  

 

Partitioning of patients  

Partitioning of patients was done using the PDS values of the centroids (matrix of three centroids and 

26 patients) by employing K-means consensus clustering on their Euclidean distance with 80% item 

and 80% gene set resampling, 100 replicates and 2-4 K-means clusters evaluation.  

 

Identification of the intersectional genes from differential gene expression analysis and 

differential pathway analysis 

Genes that were found to be differentially expressed in our previous study6 and belong to the 

deregulated gene sets found by Pathifier were matched and identified. The normalized expression 

variances were analyzed by using the first two principal components from Principal component 

analysis (PCA).  

 

Gene Ontology enrichment analysis  

The 60 genes that belong to those deregulated gene sets were visualized as nodes in their associated 

network using Cytoscape software version 3.5.1 and the top Gene Ontology (GO) encoding for 

biological process (BP) terms were enriched using ClueGO version 2.5 30.  Enrichment for 

significant BP GO terms with all evidence codes was performed by a two-sided hypergeometric 

test employing the mid-p-value method. Adjustment for multiple testing was done by controlling 

the false discovery rate following Benjamini-Hochberg method. Min GO level and Max GO level 

were set as default with no GO Fusion and Kappa Score Threshold was set as 0.3.  

 

Statistical testing 
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Differences across groups regarding background, immune, neuroendocrine/autonomic and clinical 

markers were performed by t-test statistics or Mann-Whitney U test as appropriate.  

Deregulated pathway measurement data were presented as PDS Mean, Standard deviations (SD) and 

95% Confidence Interval (95% CI). PDS mean of each gene set across three different groups were 

compared using Kruskal-Wallis test. Pairwise post-hoc comparisons were performed by non-

parametric Dunn’s tests using Benjamini-Hochberg stepwise adjustment for the multiple pairwise 

comparisons.  

 

Associations of the deregulated gene sets with other markers 

Spearman correlation matrices were applied to explore the associations between immune marker 

(hsCRP), TGF-β, neuroendocrine/autonomic markers (plasma norepinephrine, LF/HF ratio), and 

clinical markers (CFQ score, FDI score) with each of the 29 gene sets, using the cor function in R. 

 

Associations of patient subgroups stratified by plasma norepinephrine level with clinical 

markers over time 

In the entire NorCAPITAL cohort, clinical markers were compared between two subgroups of patients 

that differ by the baseline plasma norepinephrine levels. A cutoff defined by the first quartile of plasma 

norepinephrine of Group 2P (1754,75 pmol/L) delineated the NorCapital cohort (n=120) into two 

subgroups: Low norepinephrine (n=59), High norepinephrine (n=61). After removing participants 

lacking at least two time-points of the clinical measurements, two subgroups homogenous for age and 

gender ([Low norepinephrine group, n=43], [High norepinephrine =48]) were included.  

 

The CFQ and FDI scores over time (baseline, week 8 and week 30) were compared between 

norepinephrine subgroups by repeated measures ANOVA (RM ANOVA) in SPSS. The model 

included plasma norepinephrine group, gender as the main between-subject effects and age, treatment 

allocation (clonidine/placebo) as covariates. Interaction effects of treatment allocation with outcome 
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were included in the RM ANOVA model. The effect of genotype differences was not investigated as 

the genetic frequencies of the assessed adrenergic receptor and catechol O-methyl transferase 

polymorphisms were not significantly different between subgroups (Table S1). 

 

Results 

The computational workflow from visualization of Pathifier result and clustering of deregulated C7 

gene sets, patients partitioning as well as GO enrichments for differential genes is described as in Fig 

S1. 

Primary unsupervised clustering of PDS values suggested removal of extreme cases including three 

patients and one control samples (Fig S2). The Pathifier result below therefore includes 26 patients 

and 17 healthy individuals.  

 

Patient characteristics 

CFS patients had similar distribution of sex, age and body mass index (BMI) as well as immune 

markers (14.96±1.32 years old, 19.99±3.30 BMI) compared to healthy controls (14.65±1.46 years old, 

19.41±1.94 BMI) (Table 1). Regarding neuroendocrine/autonomic measurements, plasma 

norepinephrine, plasma epinephrine, and urine norepinephrine/creatinine were significantly higher in 

patients compared to controls (p<0.05, Table 1). Also, clinical markers (CFQ total score and median 

FDI) were significantly different in patients compared to healthy controls (p<0.001, Table 1). 

 

Pathway deregulation quantification and visualization  

In our analysis, we specifically aligned our normalized gene expression data with gene sets of the C7 

immunological collection of MSigDB. 

Hierarchical clustering cooperating 4309 measurable C7 gene sets showed relatively good separation 

between a subgroup of patients and controls (Fig 1A, Fig S2). In addition, this initial inspection of the 

data suggested that a panel of 29 deregulated gene sets had potential to differ patients from controls as 
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well as to subtype patients (Fig 1A). Hereafter, our pathway deregulation analysis only focused on 

these top 29 deregulated immune-gene sets. 

 

Hierarchical clustering and consensus clustering of the C7 PDS data 

By Pathifier analysis, the 29 deregulated gene sets primarily delineate patients into two subgroups: a 

subgroup of 12 patients (hereafter labeled “Group 1P”) and a second group comprising the remaining 

14 patients (“Group 2P”) (Fig 1A). Since these 29 gene sets may contain overlapping genes, consensus 

clustering was applied in order to obtain robust classification of gene sets (Fig S3A, S3C). Silhouette 

measures on the potential classification confirmed that the grouping of the 29 gene sets into three K-

means clusters resulted in the best grouping (Fig S3B). The centroids of these K-means consensus 

clusters were subsequently used in the patient-partitioning step (Fig S4, Table S2).  

Additionally, consensus clustering on the gene sets revealed Group 1P had higher immunological 

deregulation at the gene expression level than Group 2P (Fig 2A, Fig 2C, Table 2).  CFS patients in 

Group 2P and the healthy controls appeared to be more heterogeneous (Fig 1A, Table 2). 

 

Pathway deregulated score (PDS) of the 29 gene sets across groups  

The PDS per gene set across groups are displayed in Table 2. Among the 29 gene sets, the PDS values 

of 28 gene sets were found to be significantly different between the two potential patient subgroups 

(1P vs. 2P) and between Group 1P compared to healthy controls.  

 

Patient partitioning based on the K-means clustering 

Consensus clustering using the 3 K-means centroids classified the 26 patients into three subgroups 

(Fig S4 and Table S3). However, as the third grouping contained only 2 samples which appeared to 

lack PDS values for several pathways, these two patients were not considered in the 1P vs. 2P 

comparison, which therefore consisted of 12 patients per group (Fig 2A-E). 
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Differentially expressed genes component of the 29 gene sets 

A total of 176 genes have previously been reported as differentially expressed in whole blood from 

CFS patients (FDR 10%, fold change 0.82-1.25) 6. Among these genes, a total of 60 (50 up-regulated 

and 10 down-regulated genes) belong to one or more of the identified 29 deregulated immune-gene 

sets (Table S4). The first principal component of the PCA projecting the variances of the normalized 

expression counts explained 54.69% of the total variability of the 60 genes compared between the two 

patient subgroups (Fig 2B).  

 

Gene	set	enrichment	by	ClueGO	and	CluePedia	revealed	that	the	immunological	signatures	were	

dominated	 by	 innate	 immunity	 (negative	 regulation	 of	 viral	 genome	 replication,	 positive	

regulation	 of	 interleukin-1	 beta	 production)	 (Fig	 1B,	 Table	 S5).	 Negative	 regulation	 of	 viral	

genome	replication	was	the	top	immune	GO	(GO:0045071)	and	was	enriched	consistently	in	our	

repeated	 analysis	 with	 the	 presentation	 of	 FAM111A	 (encoding	 for	 Family	 with	 sequence	

similarity	111	member	A),	IFI16	(encoding	for	Interferon	gamma	inducible	protein	16),	PLSCR1	

(Phospholipid	scramblase	1).	Another	identified	immune	process	was	lymph	node	development	

(GO:0048535). 

The associations between immune markers, neuroendocrine/autonomic markers, clinical 

markers and the 29 gene sets 

Plasma norepinephrine levels (pmol/L) differed across subgroups of patients (Group 1P: Mean 1520 

[95% CI 1262-1778], Group 2P: Mean 2392 [95% CI 1797-2736]) as well as between all CFS patients 

compared to healthy controls (Patients: Mean 2090 [95% CI 1735-2445], Healthy controls: Mean 

1540 [95% CI 1352-1729], p-value=0.039, Table 1). While their immunological deregulation 

measured by PDS was higher (Fig 2A, Table S2), Group 1P had significant lower plasma 

norepinephrine level (Fig. 2D, p-value = 0.0463), and significant lower fraction of CD4+ naïve T cells 

(Fig. 2E, p-value = 0.014) compared to Group 2P. The plasma norepinephrine level of group 1P (n=12) 

was equal to the healthy control group (n=17) (data not shown). 
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In Group 1P, there was negative correlations between several  deregulated gene sets and hsCRP (such 

as r= -0.592 between 

GSE21927_SPLENIC_VS_TUMOR_MONOCYTES_FROM_C26GM_TUMOROUS_MICE_BAL

BC_DN and hsCRP) as well as plasma TGF-β3 (r=-0.664 between 

GSE21927_SPLENIC_VS_TUMOR_MONOCYTES_FROM_C26GM_TUMOROUS_MICE_BAL

BC_DN and TGF-β3) (Table S6, S7). Intriguingly, a number of gene sets in Group 1P was positively 

associated with fatigue score (Table S8). In addition, 15 out of 29 gene sets were negatively correlated 

with neutrophil cell counts (|r|> 0.5) (data not shown).  

 

In Group 2P, several gene sets were positively associated with plasma norepinephrine and the LF/HF 

ratio (Table S8); these associations were not found in the Group 1P. Furthermore, there were strong 

associations between several gene sets and functional disability score; again, these associations 

appeared to be rather specific for Group 2P (Table S9).  In addition, within Group 2P, the association 

between the 29 immune-gene sets, the blood cell counts and immune markers were much weaker than 

in Group 1P (except for the CD4 naïve T cells). 

 

Immune cell composition based on gene expression data  

The fraction of immune cell subtypes in each sample was predicted by CIBERSORT as shown in 

Table S10. The fraction of naïve CD4+ T cells was significantly different between the two 

subgroups 1P vs 2P (p-val= 0.014, Mann Whitney U test) (Fig 2E) but invariant when all patients 

(n=26) were compared to all controls (n=17) or between each subgroup vs controls. The fractions 

of remaining immune cell subtypes, including B-cell subtypes were similar between the two patient 

subgroups. 

 

The associations of plasma norepinephrine subgroups with clinical markers over time 
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The CFQ total score was found to be significantly different between the two norepinephrine groups 

([Low norepinephrine group, n=43], [High norepinephrine =48]) over time, as shown in Fig 3A. A 

similar, non-significant trend was observed for the FDI score over time (Fig 3B). 

 

Discussion 

In this study we identified a group of 29 immune-gene sets which differs a subset of CFS patients 

(n=12) from controls and which comprises 60 out of 176 genes that were previously found to be 

differentially expressed in CFS patients 6. This genetic cluster (referred to as “immune-gene network”) 

revealed two subgroups within CFS patients (Group 1P: n=12, Group 2P: n=12), which in turn differed 

significantly in plasma norepinephrine level and naïve CD4+ composition. The corresponding plasma 

norepinephrine level was able to classify a larger patient cohort (n=91) into two subgroups with 

significant differences in fatigue questionnaires score.  

 

One differentially regulated immune-gene set is the 

GSE6269_HEALTHY_VS_FLU_INF_PBMC_UP, which contains CREBZF and CXCR5. CREBZF 

encodes CREB/ATP BZIP, a transcription factor with AP1-like component, which is involved in 

MAPK-ERK and B cell receptor signaling pathways 31 32. The protein product of CXCR5, CXC motif 

chemokine receptor 5, is known to be expressed in mature B cells for guiding B cell migration into 

secondary lymph nodes. Another interesting gene set is the 

GSE21927_SPLENIC_VS_TUMOR_MONOCYTES_FROM_C26GM_TUMOROUS_MICE_BAL

BC_DN which contains 9 up-regulated genes (RSRP1, CLK4, TMEM260, ARHGAP15, WSB1, FBXL5, 

ZNF586, CLK1, NKTR). This gene set is consistently correlated with a number of immune markers as 

well as neuroendocrine/autonomic markers. The protein product of ARHGAP15 is a Rho GTPase 

activator and phospholipid binding protein of which its over-expression was found to be involved in 

actin stress fibers and cell contraction 33 that might be relevant to the fatigue symptom 34. 
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Interesting, through GO enrichment, innate and adaptive immunity genes was revealed to be connected 

through the bridge of TLR4 and TNF-a (Figure 1B,  Table S5), which supports our previous findings 

on the co-presence of up-regulated innate immune responses and down-regulated B-cell differentiation 

and survival 6. Computational deconvolution of immune cell subtypes indicated that the latter was not 

related to a reduced representation of B-cell subsets in the sample material. RNA surveillance against 

viruses represented the top biological processes (GO: 0045071), which includes FAM111A, IFI16, 

PLSCR1. Of note, PLSCR1 was validated by qPCR to be upregulated in the patient group compared 

to the control group 6. This gene encodes Phospholipid scramblase 1 (PLSCR1), an interferon-

inducible protein, which was suggested to mediate antiviral activity against DNA and RNA viruses 

through the activation of type 1 Interferon response 35.  

 

The present study also suggested subgrouping in CFS and a role of the immune-autonomic interaction 

in CFS. Patients in Group 1P were found to have significantly higher PDS values and lower naïve 

CD4+ subset than patients in Group 2P, suggesting stronger deregulation of the immune-gene 

networks. Furthermore, Group 2P had significantly higher level of plasma norepinephrine compared 

to patients in Group 1P, whose plasma norepinephrine levels were comparable to healthy controls. Our 

result might indicate that enhanced sympathetic nervous activity, causing elevated norepinephrine 

levels, may play a role in maintaining immune homeostasis in CFS individuals in the Group P2, 

whereas the lower level of norepinephrine in Group 1P corresponds with a more extensive alteration 

of immune pathways in this group. Thus, this finding is in line with previous observations and 

hypotheses of the immune-brain communication 36-38 and also agrees with general notions of 

norepinephrine as a mediator of anti-inflammatory effects37. In previous studies, norepinephrine was 

elevated in adolescent CFS as compared to healthy controls 18,39 and was suggested to potentially have 

a central role in neuroendocrine-immunological crosstalk in CFS pathogenesis. Interestingly, a very 

recent study in mice has revealed the unique molecular machinery of the sympathetic neuron- 

associated macrophages (SAMs) which participate in controlling regional norepinephrine levels 40. 

SAMs express the b-adrenergic receptors and sodium-dependent neurotransmitter transporter 

(NAT1/solute carrier protein SLC6A2) for reuptake of norepinephrine, thereby terminate its effect 
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and contribute in maintaining extracellular norepinephrine balance. In addition, SAMs were suggested 

to play a key role in the prevention of over-secretion of norepinephrine into the blood stream during 

enhanced sympathetic activity 40. Interestingly, mutation of the SLC6A2 impairing synaptic 

norepinephrine clearance was suggested to be associated with orthostatic intolerance 41 which is a 

common clinical phenomenon in CFS 42.  

 

Strikingly, these two patient subgroups differed in their patterns of associations between the immune-

gene sets and other biomarkers. Several strong associations between markers of autonomic nervous 

activity (plasma norepinephrine, ratio of heart rate frequencies (LF/HF)) and the immune-gene sets 

were found almost exclusively in Group P2, whereas immune markers (hsCRP) were associated to 

several immune-gene sets in Group 1P. Also, in Group 1P only, six gene sets were found to be 

significantly associated with TGF-b3 (Table S7). This is consistent with our previous finding on the 

association between expression levels of the CXC motif chemokine receptor 5 gene (CXCR5), B cell-

activating factor receptor gene (BAFF-R) and TGF-b 21. Of note, TGF-b plays an important role in the 

regulation of cell proliferation, differentiation, apoptosis and is related to a number of human diseases. 

The LF/HF ratio (an index of sympathetic vs. parasympathetic heart rate control) was positively 

correlated with 8 gene sets in Group 2P, but only 2 gene sets in Group 1P (Table S8). This corroborates 

our previous finding of an association between gene expression and the LF/HF index among CFS 

patients (Nguyen et al, 2017), and is also consistent with other reports of an inverse relationship 

between the inflammatory markers and reduced parasympathetic nervous activity 43. Taken together, 

these results support previous findings of a potential associated deregulation in endocrine/autonomic 

and immune system in CFS 9,44,45. Thus, the molecular mechanisms underlying such alteration should 

be scrutinized in further studies.  

 

Finally, difference in plasma norepinephrine levels between Group 1P (n=12) vs. Group 2P (n=12) 

appeared to be useful in classifying a larger patient group from the same project into two subgroups 

(Low vs. High norepinephrine) which differed significantly in the fatigue score over time (Fig 3A); a 
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non-significant trend was observed for functional disability (Fig 3B). Generally, the cohort with the 

highest plasma norepinephrine levels (similar to Group 2P) had less serious symptoms and disabilities, 

supporting the idea of increased sympathetic activity in CFS patients as a compensatory mechanism 

in order to maintain immune homeostasis. At week 8, patients who received clonidine treatment could 

result in the lower level of plasma norepinephrine 18 compared to baseline. In our preliminary analysis 

using the RM ANOVA model of CFQ/FDI over time, the effect of treatment allocation between the 

low and high norepinephrine groups was not significant, thus both clonidine and placebo groups were 

pooled together in the final RM ANOVA analysis as shown in Fig 3.  

 

With respect to genetic determinants that are associated with CFS, very few studies put genes into their 

interactive contexts, except for one study in which integrated networks and genetic variants analysis 

identified a network of 20 candidate genes associated with the Tryptophan hydroxylase 2 gene (TPH2) 

46, which encodes the THP2 protein that catalyzes the rate limiting step in the serotonin biosynthesis 

pathway. By integrating weighted gene co-expression network analysis on microarray data and genetic 

variants of 76 CFS patients, the study identified the gene network to be associated with CFS severity 

46. While most of the efforts in molecular CFS studies have been looking at single associated loci, the 

fluctuation coming from networks of genes or proteins may be more relevant. Therefore, in addition 

to per gene measurement, the present study shows that it is worthwhile to calculate the effect of the 

corresponding deregulated hubs of genes. Importantly, the delineation of CFS patients into two such 

subgroups with differences in plasma norepinephrine and clinical symptoms suggests that stratification 

of participants might be useful to reduce the heterogeneity in CFS.  

 

In conclusion, we identified a 29 immune-gene sets linked to plasma norepinephrine and naïve CD4+ 

T cells which can delineate subgroups of CFS patients and the potential involvement of neuro-immune 

dysregulation in CFS pathophysiology. The delineation of patients into two subgroups with differential 

norepinephrine levels suggests plasma norepinephrine might be used to stratify patient in future 

clinical studies; e.g. novel therapeutic strategies might be designed and tested in patients with similar 

levels of norepinephrine. 
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Figure legends 

Fig 1.  The top 29 deregulated gene sets and the corresponding biological processes 

A. Unsupervised clustering on pathway deregulation score (PDS) of 43 individuals (26 patients 

and 17 controls) identified clustering of a subset of patients into Group 1P. Horizontal annotation: 

Patients in red, Healthy controls in green. Increasing plasma norepinephrine levels range from white 

to dark gray. Left vertical annotation: Selective differentially expressed immune-genes. 

B. Significant biological processes enriched from 60 differentially expressed genes (DE genes) 

(Table S4) from Pathifier and gene expression analysis. Red nodes are genes from the original list. 

GO groups are corresponding with the enrichment statistics in Table S5. 

 

Fig 2.  Differences between two subgroups of CFS patients. Group 1P (Low plasma 

Norepinephrine and High PDS) vs Group 2P (High plasma Norepinephrine and Low PDS). 

Group 1P in Red, Group 2P in Blue 

A. Comparison of Pathway Deregulation Score (mean PDS) of centroid clusters across patient 

groups, p-val < 0.0001 by t test. 

B. PCA plot inspecting variance of normalized expression of 60 differentially expressed genes.  

C. Unsupervised clustering of the centroids of K-means cluster. 

D. Plasma Norepinephrine (pmol/L) difference between two subgroups of patients. Group 1P: 

Mean 1520 pmol/L (95% CI 1262-1778), Group 2P: Mean 2392 pmol/L (95% CI 1797-2736). 

p-val = 0.0463, Mann-Whitney U-test.  

E. Naïve CD4 T cells composition differences between Group 1P vs Group 1P. Group 1P: Mean 

0.2036 (95% CI 0.1795 - 0.2287), Group 2P: Mean 0.2509 (95% CI 0.2044 – 0.2974). p-val = 

0.014,  Mann-Whitney U-test.  

Fig 3. Association between plasma norepinephrine stratification in the NorCAPITAL population 

and clinical symptoms 
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A. Chalder Fatigue Questionnaires scores (CFQ) over time were significantly higher in the Low 

plasma norepinephrine group (n=39) compared to the High plasma norepinephrine group 

(n=40). Data are given as mean ± SEM (p-val =0.023, test of between-subjects effect, repeated 

measures ANOVA).  

B. Differences in Functional Disability Inventory score (FDI) over time between the low (n=43) 

and high (n=48) plasma norepinephrine were shown. Data are given as mean ± SEM (p-val 

=0.472, test of between-subjects effect, repeated measures ANOVA).  
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Figure S1

Fig S1. Computational Workflow. Pathifier analysis identified the top 29
deregulated gene sets and unsupervised clustering suggested subgroups of
patients. Then supervised method was used to classify gene sets into 3 K-
Means clusters of which the centroids were the centers of the
clusters. Subsequently, those three centroids were used to partition patients.
Differentially expressed genes were matched with gene contents of the C7
MSigDB. GO enrichment by ClueGO was performed.



Figure S2

Extreme cases

Fig S2. Preliminary analysis. Hierarchical clustering of the top deregulated C7
gene sets allowed detection of outliers/extreme cases as shown in the two red
frames (3 patients and 1 controls).



B. Silhouette plot 
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Fig S3. Consensus clustering of the 29 deregulated gene sets
A. Visualization of consensus matrices from K-means consensus clustering for K = 3,
4, 5 and 6 target clusters. Number of K-means clusters were derived using consensus
clustering based on the 29 gene sets x 43 individuals matrix, exploring the range of 2
to 6 K-means clusters on the 29 gene sets (Only results of k from 3-6 were shown).
Consensus cumulative distribution function (CDF) and delta area (change in CDF
area) plots for 2–6 clusters. The delta plot when k=3 showed the optimal change of
segregated groups observed.

B. Silhouette plots were generated to evaluate the coherence of the clustering of the
29 gene sets. Silhouette plots when K = 3 or K = 4 showed the clearer partitioning for
K = 3.

C. PCA inspecting PDS variances of the 29 gene sets colored by their corresponding 
K-Means clusters. Black: Cluster 1, Red: Cluster 2, Green: Cluster 3.
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Fig S4. Partitioning of patients using consensus clustering
A. Visualization of consensus matrices from K-means consensus clustering.
Number of K-means clusters were derived using consensus clustering based
on 3 centroids of the 26 patients, exploring the range of 2 to 4 K-means
clusters.

B. Silhouette plots for K = 3 clusters showed the clearest partitioning.

C. Consensus CDF and delta area (change in CDF area) plots for 2–4 
clusters. The delta plot when k=3 showed the change of robustly segregated
groups.


