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A B S T R A C T

Background: Chronic Fatigue Syndrome (CFS) is one of the most important causes of disability among adoles-
cents while limited knowledge exists on genetic determinants underlying disease pathophysiology.
Methods: We analyzed deregulated immune-gene modules using Pathifier software on whole blood gene ex-
pression data (29 CFS patients, 18 controls). Deconvolution of immune cell subtypes based on gene expression
profile was performed using CIBERSORT. Supervised consensus clustering on pathway deregulation score (PDS)
was used to define CFS subgroups. Associations between PDS and immune, neuroendocrine/autonomic and
clinical markers were examined. The impact of plasma norepinephrine level on clinical markers over time was
assessed in a larger cohort (91 patients).
Results: A group of 29 immune-gene sets was shown to differ patients from controls and detect subgroups within
CFS. Group 1P (high PDS, low norepinephrine, low naïve CD4+ composition) had strong association with levels
of serum C-reactive protein and Transforming Growth Factor-beta. Group 2P (low PDS, high norepinephrine,
high naïve CD4+ composition) had strong associations with neuroendocrine/autonomic markers. The corre-
sponding plasma norepinephrine level delineated 91 patients into two subgroups with significant differences in
fatigue score.
Conclusion: We identified 29 immune-gene sets linked to plasma norepinephrine level that could delineate CFS
subgroups. Plasma norepinephrine stratification revealed that lower levels of norepinephrine were associated
with higher fatigue. Our data suggests potential involvement of neuro-immune dysregulation and genetic
stratification in CFS.

1. Introduction

The Chronic Fatigue Syndrome (CFS) is characterized by dis-
proportional fatigue after exertions, musculoskeletal pain, cognitive
impairment and other symptoms. The prevalence of CFS is expected to
be between 0.006% and 3% (Cleare et al., 2015.) and the disease affects
more females than males. CFS is a major threat towards adolescent
health, with strong negative impact on academic development and fa-
mily life (Kennedy et al., 2010).

The aetiology of CFS is unknown; however, several studies have

linked its pathophysiology to perturbation in the immune system in-
cluding altered function of B cells, Tregs, neutrophils and NK cells
(Bradley et al., 2013; Brenu et al., 2014)and altered levels of certain
cytokines associated with disease duration (Montoya et al., 2017). Re-
cently, we identified subtle downregulation of genes encoding proteins
that function in adaptive immune responses and upregulation of genes
belonging to innate responses in whole blood mRNA of young CFS
patients compared with healthy controls (Nguyen et al., 2017). Ad-
ditionally, CFS is characterized by neuroendocrine alterations including
enhanced sympathetic nervous activity, increased plasma levels of
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catecholamines and attenuation of the hypothalamus-pituitaryadrenal
axis (HPA-axis) (Jason et al., 2011; Papadopoulos and Cleare, 2011;
Wyller et al., 2016)

Increasing evidences in systems biology have suggested that
studying higher degree of molecular interactions might shed light on
the underlying mechanisms of complex diseases (Barabasi et al., 2011;
Vidal et al., 2011). Approaches studying groups of genes that are
functionally related could help to identify co-expression modules or
elucidate perturbed biological networks. Such analyses incorporate
quantitative profiles of each molecule into higher order of their inter-
active map such as gene sets, protein networks, or signaling pathways.
In turn, associations between deregulated modules/networks and clin-
ical symptoms could be the effective tools to generate hypotheses
concerning disease mechanism. Pathway-based genomic models have
been demonstrated to give better indicators of prognosis for a number
of diseases (Huang et al., 2014; Sun et al., 2014). From available gene
expression data, pathway-based analysis such as Pathifier can identify
deregulated pathways or disrupted gene network using measurement of
pathway deregulated scoring (PDS).

Generally, there is a lack of association studies between clinical and
genomic features in CFS. Another important point is the heterogeneity
regarding the CFS diagnostic criteria (Asprusten et al., 2015; Jason
et al., 2015; Rowe et al., 2017). These criteria may be related to dif-
ferent subtypes of the disease (Jason et al., 2005). We hypothesized that
identification of differential gene expression modules could help to
delineate subgroups of CFS.

Therefore, the aims of the present study were two-fold: 1) To identify
immune deregulation at the gene set level in adolescent CFS by an ex-
ploratory computational approach making use of whole blood gene ex-
pression data; and 2) To delineate subgroups in a cohort of adolescent CFS
patients by examining clusters of immune gene module expression.

2. Methods

2.1. Study design

Adolescent CFS patients (n= 120, mean age 14.96 years, 62% fe-
males) and healthy controls (n=68, mean age 14.65 years, 59% fe-
males) were recruited to the NorCAPITAL-project (The Norwegian
Study of Chronic Fatigue Syndrome in Adolescents: Pathophysiology
and Intervention Trial; ClinicalTrials ID: NCT01040429), a cross-sec-
tional study of CFS patients and healthy adolescents combined with a
randomized controlled trial (RCT) of low-dose clonidine vs. placebo in
the CFS group (Sulheim et al., 2014). Clonidine is an alpha-adrenor-
eceptor agonist which reduces neural sympathetic outflow, thereby
lowering heart rate, blood pressures and total peripheral resistance
(Yasaei and Saadabadi, 2018). In NorCAPITAL, CFS patients allocated
to the active treatment arm of the RCT received oral clonidine capsules
25 µg or 50 µg twice daily, respectively, for body weight below/above
35 kg. CFS patients were summoned for investigations at three time-
points: Baseline (prior to treatment allocation in the RCT), at 8 weeks
(during treatment), and at 30 weeks (after treatment discontinuation).
Healthy controls were seen only once. Ethical approval of the study was
granted by the Regional Committee for Ethics in Medical Research, the
Norwegian Data Inspectorate, the Norwegian Directorate of Health, and
the Norwegian Medicines Agency.

2.2. Recruitment

Details of the recruitment procedure and inclusion/exclusion cri-
teria are described elsewhere (Sulheim et al., 2014). Briefly, all hospital
pediatric departments in Norway (n= 20), as well as primary care
pediatricians and general practitioners, were invited to refer CFS pa-
tients aged 12–18 years consecutively to our study center. A standard
form required the referral unit to confirm the result of clinical in-
vestigations considered compulsory to diagnose pediatric CFS

according to national Norwegian recommendations (pediatric specialist
assessment, comprehensive hematology and biochemistry analyses,
chest X-ray, abdominal ultrasound, and brain MRI). Also, the referring
units were required to confirm that the patient a) was unable to follow
normal school routines due to fatigue; b) was not permanently bed-
ridden; c) did not have any concurrent medical or psychiatric disorder
that might explain the fatigue; d) did not experience any concurrent
demanding life event (such as parents’ divorce) that might explain the
fatigue; e) did not use pharmaceuticals (including hormone contra-
ceptives) regularly. The patients were not screened for childhood
trauma experiences. Patients considered eligible to this study were
summoned to a clinical encounter at our study center after which a final
decision on inclusion was made. In agreement with clinical guidelines,
we applied a ‘broad’ case definition of CFS, requiring three months of
unexplained, disabling chronic/relapsing fatigue of new onset (Health
RCoPaC, 2004). We did not require that patients meet any other ac-
companying symptom criteria. A group of healthy controls having the
same distribution of sex and age as the CFS patients was recruited from
local schools.

2.3. Immune, neuroendocrine/autonomic, and clinical markers

Serum level of C-reactive protein, high-sensitive assay (hsCRP) was
analyzed by particle-enhanced immunoturbidimetric assay (CRP Latex
HS, Roche Diagnostics, Indianapolis, IN, USA). Plasma levels of
Transforming Growth Factor β (TGF-β) including three isoforms of TGF-β
(TGF-β1, TGF-β2 and TGF-β3) was analyzed using Bio-Plex Human TGF-β
3-plex (Bio-Rad Laboratories Inc., Hercules, CA, USA) and performed by
the Bio-Plex200 system. Neuroendocrine/autonomic markers (plasma and
urine levels of norepinephrine and epinephrine) were collected as pre-
viously described and measured by the use of high performance liquid
chromatography (HPLC) with a reversed-phase column and glassy carbon
electrochemical detector (Antec, Leyden Deacade II SCC, Zoeterwoude,
The Netherlands) (Nguyen et al., 2017; Wyller et al., 2017). The low
frequency:high frequency (LF/HR) ratio of supine heart rate variability is
an index of sympathetic versus parasympathetic heart rate control; it was
calculated from 4min ECG recordings of horizontal-laying participants
connected to the Task Force Monitor (Model 3040i, CN Systems Medi-
zintechnik, Graz, Austria) as described elsewhere (Godec et al., 2016).
The clinical symptom of fatigue (a main complaint among CFS patients)
was charted by the Chalder Fatigue Questionnaires (CFQ); a validated
instrument consisting of 11 items scored on 0–3 Likert scales (Sulheim
et al., 2014). Global functional ability was assessed by the Functional
Disability Inventory (FDI), consisting of 15 items scored on 0–4 Likert
scales (Sulheim et al., 2014).

2.4. Whole blood gene expression data

Random sampling of 29 CFS patients and 18 healthy controls at time
of inclusion (baseline) with similar demographical and clinical para-
meters compared to the NorCapital cohort were used for whole blood
RNA extraction (Nguyen et al., 2017). These two groups were homo-
genous for age and gender (Table 1).

All RNAs with RIN-value>7 were used for gene expression mea-
surements, as described elsewhere (Nguyen et al., 2017). After re-
moving globin and ribosomal RNAs, mRNA sequencing was performed
on the Illumina HiSeq 2500 according to the protocol of TruSeq
Stranded mRNA single-end sequencing. Normalization of gene expres-
sion data from this whole blood was performed using RUVSeq and
differential expression analysis was done using DESeq2 as described
previously (Nguyen et al., 2017).

2.5. Gene sets and pathway database

Gene sets were downloaded from the Molecular Signatures Database
(MSigDB version 5.0) from the C7-immunologic collection consisting of
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4872 gene sets. This C7 collection contains list of gene sets that are
known to be related to the immune system from 389 published tran-
scriptomic studies of immunologic cell states and immune dysregula-
tion in mouse and human (254 studies in mouse and 135 in human). It
was built based on manually annotated gene sets from a wide range of
cell states, experimental evidences and genetic alteration that represent
cell types, states, and perturbations within the immune system (Godec
et al., 2016). The name of each gene set is context-specific with di-
rection of change for each group of genes per experiment.

2.6. Bioinformatics and statistical analysis

All computational analyses were performed in the R environment of
version 3.4.2 (2017-09-28) and with Graphpad Prism version 6
(GraphPad Software, CA, USA). Two-sided p-values less than 0.05 were
considered statistically significant.

2.7. Pathway analysis

Pathway Deregulation Score (PDS) for a given pathway or gene set
based on gene expression data was computed by Pathifier Bioconductor
package 1.16.0 (Drier et al., 2013) implemented in R. The Pathifier
method (Drier et al., 2013) uses pathway annotation resources such as
the Molecular Signatures Database MSigDB (Liberzon et al., 2011) to
estimate the PDS of each pathway per sample. MSigDB contains 17,786
gene sets spanning across canonical pathways, biological processes and
interactive gene sets of the immune system. These gene sets are divided
into 8 main collections and several sub-collections based on database
types, ontology resources or positional annotation. From the normal-
ized gene expression data, Pathifier transformed per gene quantifica-
tion into pathway-level measurement and compared their deregulated
profile with the corresponding pathway profile of the healthy controls.
PDS was ranged from 0 to 1 in which higher values of PDS reveal higher
degree of deregulation compared to reference (the healthy controls
group).

The normalized RNA-Seq data consisting of 20,729 genes from 47
samples (29 patients and 18 controls) was used as input for Pathifier.
Output of Pathifier analysis was a matrix of which rows represented the

pathways or gene sets and columns were the corresponding PDS of each
pathway/gene set per sample.

2.8. Visualization of the deregulated gene sets

Unsupervised clustering on Euclidean distance of PDS values was
constructed using Ward’s agglomerative linkage method (ward.D2) and
visualized as a heatmap by hierarchical clustering using the heatmap3
package version 1.1.1 (Zhao et al., 2014). To avoid individual deviation
in the cluster, samples that had technical errors such as PDS clustered
together in the reverse way compared with all the remaining patients/
controls or lacked measurement in several pathways were considered as
outliers/ extreme cases (Fig. S1).

2.9. Deconvolution of immune cell subtypes from gene expression data

Characterization of the immune cell subtype composition from
whole blood gene expression was performed using CIBERSORT soft-
ware with the inclusion of LM22 background containing 22 immune
cell types and 1000 permutation for statistical estimation (Newman
et al., 2015).

2.10. Consensus clustering of the deregulated gene sets

Classification of the top deregulated gene sets of 43 samples (26
patients, 17 controls after removing the extreme cases) into clusters was
identified using ConsensusClusterPlus package version 1.40.0 (Wilkerson
and Hayes, 2010). Consensus clustering of the deregulated gene sets
from the analysis on C7 MSigDB was performed by three different
clustering algorithms (Hierarchical clustering, K-means, Partition
around medoids (PAM)) with 80% item resampling, 80% gene resam-
pling, 100 replications and an evaluation of two to six clusters using
Euclidean distance. Dissimilarities between each object in each cluster
were inspected by measuring the Silhouette value using the Cluster
package version 2.0.6 (Maechler et al., 2017).

Table 1
Background characteristics of the chronic fatigue syndrome (CFS) group and healthy controls (HC).

CFS (n=26) HC (n=17) P value

Background markers
Female gender. Number, % 16.00 61.54 10.00 58.82 0.384
Age (years). Mean, SD 14.96 1.32 14.65 1.46 0.482
Body mass index (kg/m2). Mean, SD 19.99 3.30 19.41 1.94 0.356
Disease duration (months). Median, range 12.00 4 to 60 N/A

Immune markers
Blood leukocytes (cells x 109/L). Mean, SD 5.62 1.50 5.52 1.07 0.808
Blood neutrophils (cells x 109/L). Mean, SD 2.67 0.86 2.77 0.74 0.694
Blood monocytes (cells x 109/L). Mean, SD 0.48 0.17 0.42 0.11 0.354
Serum C-reactive protein (mg/L). Median, IQR 0.33 0.69 0.29 0.27 0.630
TGF-ß1. Mean, SD 5449.00 5187.56 6299.00 2854.88 0.961
TGF-ß2. Mean, SD 792.20 273.14 847.00 255.75 0.505
TGF-ß3. Mean, SD 295.50 205.59 287.00 140.61 0.884

Neuroendocrine markers
LF/HF-ratio. Median, IQR* 0.53 0.51 0.94 0.32 0.240
Plasma norepinephrine (pmol/L). Mean, SD 2090.00 879.02 1540.00 366.52 0.039
Plasma epinephrine (pmol/L). Mean, SD 366.90 136.55 291.00 68.74 0.021
Urine norepinephrine/creatinine ratio (nmol/mmol). Mean, SD 13.45 6.75 11.09 3.55 0.030
Urine epinephrine/creatinine ratio (nmol/mmol). Mean, SD 1.34 0.93 1.54 0.94 0.935

Clinical markers
Chalder fatigue questionnaire (CFQ, total score). Median, IQR* 21.00 6.75 9.00 5.50 <0.001
Functional Disability Inventories score. Median, IQR* 28.00 11.50 0.00 1.00 <0.001

N/A: not applicable; SD: Standard Deviation, IQR: Interquartile range; *n= 7 in HC
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2.11. Establishment of the three gene set clusters and their centroids

The best clustering algorithm chosen was K-means (K=3) fol-
lowing Silhouette values and output of ConsensusClusterPlus. Results for
the hierarchical clustering and PAM are not shown, but these results
can be reproduced with the code provided in https://github.com/
chinhbn/pathifier. The three centroids were the centers of three clusters
computed by K-means clustering (K=3) above. Summary of the best
consensus clustering result was performed by an unsupervised clus-
tering employing ward.D method and Euclidean distance of the cen-
troids using pheatmap package version 1.0.8 (Kolde, 2012).

2.12. Partitioning of patients

Partitioning of patients was done using the PDS values of the cen-
troids (matrix of three centroids and 26 patients) by employing K-
means consensus clustering on their Euclidean distance with 80% item
and 80% gene set resampling, 100 replicates and 2–4 K-means clusters
evaluation.

2.13. Identification of the intersectional genes from differential gene
expression analysis and differential pathway analysis

Genes that were found to be differentially expressed in our previous
study (Nguyen et al., 2017) and belong to the deregulated gene sets
found by Pathifier were matched and identified. The normalized ex-
pression variances were analyzed by using the first two principal
components from Principal component analysis (PCA).

2.14. Gene ontology enrichment analysis

The 60 genes that belong to those deregulated gene sets were vi-
sualized as nodes in their associated network using Cytoscape software
version 3.5.1 and the top Gene Ontology (GO) encoding for biological
process (BP) terms were enriched using ClueGO version 2.5 (Bindea
et al., 2009). Enrichment for significant BP GO terms with all evidence
codes was performed by a two-sided hypergeometric test employing the
mid-p-value method. Adjustment for multiple testing was done by
controlling the false discovery rate following Benjamini-Hochberg
method. Min GO level and Max GO level were set as default with no GO
Fusion and Kappa Score Threshold was set as 0.3.

2.15. Statistical testing

Differences across groups regarding background, immune, neu-
roendocrine/autonomic and clinical markers were performed by t-test
statistics or Mann-Whitney U test as appropriate.

Deregulated pathway measurement data were presented as PDS
Mean, Standard deviations (SD) and 95% Confidence Interval (95% CI).
PDS mean of each gene set across three different groups were compared
using Kruskal-Wallis test. Pairwise post-hoc comparisons were per-
formed by non-parametric Dunn’s tests using Benjamini-Hochberg
stepwise adjustment for the multiple pairwise comparisons.

2.16. Associations of the deregulated gene sets with other markers

Spearman correlation matrices were applied to explore the asso-
ciations between immune marker (hsCRP), TGF-β, neuroendocrine/
autonomic markers (plasma norepinephrine, LF/HF ratio), and clinical
markers (CFQ score, FDI score) with each of the 29 gene sets, using the
cor function in R.

2.17. Associations of patient subgroups stratified by plasma norepinephrine
level with clinical markers over time

In the entire NorCAPITAL cohort, clinical markers were compared

between two subgroups of patients that differ by the baseline plasma
norepinephrine levels. A cutoff defined by the first quartile of plasma
norepinephrine of Group 2P (1754,75 pmol/L) delineated the
NorCapital cohort (n=120) into two subgroups: Low norepinephrine
(n= 59), High norepinephrine (n= 61). After removing participants
lacking at least two time-points of the clinical measurements, two
subgroups homogenous for age and gender ([Low norepinephrine
group, n=43], [High norepinephrine= 48]) were included.

The CFQ and FDI scores over time (baseline, week 8 and week 30)
were compared between norepinephrine subgroups by repeated mea-
sures ANOVA (RM ANOVA) in SPSS. The model included plasma nor-
epinephrine group, gender as the main between-subject effects and age,
treatment allocation (clonidine/placebo) as covariates. Interaction ef-
fects of treatment allocation with outcome were included in the RM
ANOVA model. The effect of genotype differences was not investigated
as the genetic frequencies of the assessed adrenergic receptor and ca-
techol O-methyl transferase polymorphisms were not significantly dif-
ferent between subgroups (Table S1).

3. Results

The computational workflow from visualization of Pathifier result
and clustering of deregulated C7 gene sets, patients partitioning as well
as GO enrichments for differential genes is described as in Fig. S1.

Primary unsupervised clustering of PDS values suggested removal of
extreme cases including three patients and one control samples (Fig.
S2). The Pathifier result below therefore includes 26 patients and 17
healthy individuals.

3.1. Patient characteristics

CFS patients had similar distribution of sex, age and body mass
index (BMI) as well as immune markers (14.96 ± 1.32 years old,
19.99 ± 3.30 BMI) compared to healthy controls (14.65 ± 1.46 years
old, 19.41 ± 1.94 BMI) (Table 1). Regarding neuroendocrine/auto-
nomic measurements, plasma norepinephrine, plasma epinephrine, and
urine norepinephrine/creatinine were significantly higher in patients
compared to controls (p < 0.05, Table 1). Also, clinical markers (CFQ
total score and median FDI) were significantly different in patients
compared to healthy controls (p < 0.001, Table 1).

3.2. Pathway deregulation quantification and visualization

In our analysis, we specifically aligned our normalized gene ex-
pression data with gene sets of the C7 immunological collection of
MSigDB.

Hierarchical clustering cooperating 4309 measurable C7 gene sets
showed relatively good separation between a subgroup of patients and
controls (Fig. 1A, Fig. S2). In addition, this initial inspection of the data
suggested that a panel of 29 deregulated gene sets had potential to
differ patients from controls as well as to subtype patients (Fig. 1A).
Hereafter, our pathway deregulation analysis only focused on these top
29 deregulated immune-gene sets.

3.3. Hierarchical clustering and consensus clustering of the C7 PDS data

By Pathifier analysis, the 29 deregulated gene sets primarily de-
lineate patients into two subgroups: a subgroup of 12 patients (here-
after labeled “Group 1P”) and a second group comprising the remaining
14 patients (“Group 2P”) (Fig. 1A). Since these 29 gene sets may con-
tain overlapping genes, consensus clustering was applied in order to
obtain robust classification of gene sets (Fig. S3A, C). Silhouette mea-
sures on the potential classification confirmed that the grouping of the
29 gene sets into three K-means clusters resulted in the best grouping
(Fig. S3B). The centroids of these K-means consensus clusters were
subsequently used in the patient-partitioning step (Fig. S4, Table S2).
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Fig. 1. The top 29 deregulated gene sets and the corresponding biological processes. A. Unsupervised clustering on pathway deregulation score (PDS) of 43
individuals (26 patients and 17 controls) identified clustering of a subset of patients into Group 1P. Horizontal annotation: Patients in red, Healthy controls in green.
Increasing plasma norepinephrine levels range from white to dark gray. Left vertical annotation: Selective differentially expressed immune-genes. B. Significant
biological processes enriched from 60 differentially expressed genes (DE genes) (Table S4) from Pathifier and gene expression analysis. Red nodes are genes from the
original list. GO groups are corresponding with the enrichment statistics in Table S5. (For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)

C.B. Nguyen et al. Brain, Behavior, and Immunity xxx (xxxx) xxx–xxx

5



Additionally, consensus clustering on the gene sets revealed Group
1P had higher immunological deregulation at the gene expression level
than Group 2P (Fig. 2A, C, Table 2). CFS patients in Group 2P and the
healthy controls appeared to be more heterogeneous (Fig. 1A, Table 2).

3.4. Pathway deregulated score (PDS) of the 29 gene sets across groups

The PDS per gene set across groups are displayed in Table 2. Among
the 29 gene sets, the PDS values of 28 gene sets were found to be sig-
nificantly different between the two potential patient subgroups (1P vs.

Fig. 2. Differences between two subgroups of CFS patients. Group 1P (Low plasma Norepinephrine and High PDS) vs Group 2P (High plasma Norepinephrine and
Low PDS). Group 1P in Red, Group 2P in Blue. A. Comparison of Pathway Deregulation Score (mean PDS) of centroid clusters across patient groups, p-val< 0.0001
by t test.B. PCA plot inspecting variance of normalized expression of 60 differentially expressed genes. C. Unsupervised clustering of the centroids of K-means cluster.
D. Plasma Norepinephrine (pmol/L) difference between two subgroups of patients. Group 1P: Mean 1520 pmol/L (95% CI 1262–1778), Group 2P: Mean 2392 pmol/L
(95% CI 1797–2736). p-val= 0.0463, Mann-Whitney U test. E. Naïve CD4 T cells composition differences between Group 1P vs Group 1P. Group 1P: Mean 0.2036
(95% CI 0.1795–0.2287), Group 2P: Mean 0.2509 (95% CI 0.2044 – 0.2974). p-val= 0.014, Mann-Whitney U test. (For interpretation of the references to colour in
this figure legend, the reader is referred to the web version of this article.)
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2P) and between Group 1P compared to healthy controls.

3.5. Patient partitioning based on the K-means clustering

Consensus clustering using the 3 K-means centroids classified the 26
patients into three subgroups (Fig. S4 and Table S3). However, as the
third grouping contained only 2 samples which appeared to lack PDS
values for several pathways, these two patients were not considered in
the 1P vs. 2P comparison, which therefore consisted of 12 patients per
group (Fig. 2A-E).

3.6. Differentially expressed genes component of the 29 gene sets

A total of 176 genes have previously been reported as differentially
expressed in whole blood from CFS patients (FDR 10%, fold change
0.82–1.25) (Nguyen et al., 2017). Among these genes, a total of 60 (50
up-regulated and 10 down-regulated genes) belong to one or more of
the identified 29 deregulated immune-gene sets (Table S4). The first
principal component of the PCA projecting the variances of the nor-
malized expression counts explained 54.69% of the total variability of
the 60 genes compared between the two patient subgroups (Fig. 2B).

Gene set enrichment by ClueGO and CluePedia revealed that the
immunological signatures were dominated by innate immunity (nega-
tive regulation of viral genome replication, positive regulation of in-
terleukin-1 beta production) (Fig. 1B, Table S5). Negative regulation of
viral genome replication was the top immune GO (GO:0045071) and
was enriched consistently in our repeated analysis with the presentation
of FAM111A (encoding for Family with sequence similarity 111
member A), IFI16 (encoding for Interferon gamma inducible protein
16), PLSCR1 (Phospholipid scramblase 1). Another identified immune
process was lymph node development (GO:0048535).

3.7. The associations between immune markers, neuroendocrine/autonomic
markers, clinical markers and the 29 gene sets

Plasma norepinephrine levels (pmol/L) differed across subgroups of
patients (Group 1P: Mean 1520 [95% CI 1262–1778], Group 2P: Mean
2392 [95% CI 1797–2736]) as well as between all CFS patients com-
pared to healthy controls (Patients: Mean 2090 [95% CI 1735–2445],
Healthy controls: Mean 1540 [95% CI 1352–1729], p-value= 0.039,
Table 1). While their immunological deregulation measured by PDS
was higher (Fig. 2A, Table S2), Group 1P had significant lower plasma
norepinephrine level (Fig. 2D, p-value= 0.0463), and significant lower
fraction of CD4+ naïve T cells (Fig. 2E, p-value= 0.014) compared to
Group 2P. The plasma norepinephrine level of group 1P (n=12) was
equal to the healthy control group (n=17) (data not shown).

In Group 1P, there was negative correlations between several de-
regulated gene sets and hsCRP (such as r=−0.592 between
GSE21927_SPLENIC_VS_TUMOR_MONOCYTES_FROM_C26GM_TUMOR
OUS_MICE_BALBC_DN and hsCRP) as well as plasma
TGF-β3 (r=−0.664 between GSE21927_SPLENIC_VS_
TUMOR_MONOCYTES_FROM_C26GM_TUMOROUS_MICE_BALBC_DN
and TGF-β3) (Table S6 and S7). Intriguingly, a number of gene sets in
Group 1P was positively associated with fatigue score (Table S8). In
addition, 15 out of 29 gene sets were negatively correlated with neu-
trophil cell counts (|r| > 0.5) (data not shown).

In Group 2P, several gene sets were positively associated with
plasma norepinephrine and the LF/HF ratio (Table S8); these associa-
tions were not found in the Group 1P. Furthermore, there were strong
associations between several gene sets and functional disability score;
again, these associations appeared to be rather specific for Group 2P
(Table S9). In addition, within Group 2P, the association between the
29 immune-gene sets, the blood cell counts and immune markers were
much weaker than in Group 1P (except for the CD4 naïve T cells).Ta
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3.8. Immune cell composition based on gene expression data

The fraction of immune cell subtypes in each sample was predicted
by CIBERSORT as shown in Table S10. The fraction of naïve CD4+ T
cells was significantly different between the two subgroups 1P vs 2P (p-
val= 0.014, Mann Whitney U test) (Fig. 2E) but invariant when all pa-
tients (n= 26) were compared to all controls (n=17) or between each
subgroup vs controls. The fractions of remaining immune cell subtypes,
including B-cell subtypes were similar between the two patient sub-
groups.

3.9. The associations of plasma norepinephrine subgroups with clinical
markers over time

The CFQ total score was found to be significantly different between
the two norepinephrine groups ([Low norepinephrine group, n= 43],
[High norepinephrine=48]) over time, as shown in Fig. 3A. A similar,
non-significant trend was observed for the FDI score over time (Fig. 3B).

4. Discussion

In this study we identified a group of 29 immune-gene sets which
differs a subset of CFS patients (n= 12) from controls and which
comprises 60 out of 176 genes that were previously found to be dif-
ferentially expressed in CFS patients (Nguyen et al., 2017). This genetic
cluster (referred to as “immune-gene network”) revealed two subgroups
within CFS patients (Group 1P: n= 12, Group 2P: n=12), which in
turn differed significantly in plasma norepinephrine level and naïve
CD4+ composition. The corresponding plasma norepinephrine level
was able to classify a larger patient cohort (n=91) into two subgroups
with significant differences in fatigue questionnaires score.

One differentially regulated immune-gene set is the
GSE6269_HEALTHY_VS_FLU_INF_PBMC_UP, which contains CREBZF
and CXCR5. CREBZF encodes CREB/ATP BZIP, a transcription factor
with AP1-like component, which is involved in MAPK-ERK and B cell
receptor signaling pathways (Bodnarchuk et al., 2012; GeneCards). The
protein product of CXCR5, CXC motif chemokine receptor 5, is known
to be expressed in mature B cells for guiding B cell migration into
secondary lymph nodes. Another interesting gene set is the
GSE21927_SPLENIC_VS_TUMOR_MONOCYTES_FROM_C26GM_TUMO-
ROUS_MICE_BALBC_DN which contains 9 up-regulated genes (RSRP1,
CLK4, TMEM260, ARHGAP15, WSB1, FBXL5, ZNF586, CLK1, NKTR).
This gene set is consistently correlated with a number of immune
markers as well as neuroendocrine/autonomic markers. The protein

product of ARHGAP15 is a Rho GTPase activator and phospholipid
binding protein of which its over-expression was found to be involved
in actin stress fibers and cell contraction (Seoh et al., 2003) that might
be relevant to the fatigue symptom (MacIntosh et al., 2012).

Interesting, through GO enrichment, innate and adaptive immunity
genes was revealed to be connected through the bridge of TLR4 and
TNF-α (Fig. 1B, Table S5), which supports our previous findings on the
co-presence of up-regulated innate immune responses and down-regu-
lated B-cell differentiation and survival (Nguyen et al., 2017). Com-
putational deconvolution of immune cell subtypes indicated that the
latter was not related to a reduced representation of B-cell subsets in the
sample material. RNA surveillance against viruses represented the top
biological processes (GO: 0045071), which includes FAM111A, IFI16,
PLSCR1. Of note, PLSCR1 was validated by qPCR to be upregulated in
the patient group compared to the control group (Nguyen et al., 2017).
This gene encodes Phospholipid scramblase 1 (PLSCR1), an interferon-
inducible protein, which was suggested to mediate antiviral activity
against DNA and RNA viruses through the activation of type 1 Inter-
feron response (Dong et al., 2004).

The present study also suggested subgrouping in CFS and a role of
the immune-autonomic interaction in CFS. Patients in Group 1P were
found to have significantly higher PDS values and lower naïve CD4+
subset than patients in Group 2P, suggesting stronger deregulation of
the immune-gene networks. Furthermore, Group 2P had significantly
higher level of plasma norepinephrine compared to patients in Group
1P, whose plasma norepinephrine levels were comparable to healthy
controls. Our result might indicate that enhanced sympathetic nervous
activity, causing elevated norepinephrine levels, may play a role in
maintaining immune homeostasis in CFS individuals in the Group P2,
whereas the lower level of norepinephrine in Group 1P corresponds
with a more extensive alteration of immune pathways in this group.
Thus, this finding is in line with previous observations and hypotheses
of the immune-brain communication (Watkins et al., 1995; Sternberg,
2006; Andersson and Tracey, 2012) and also agrees with general no-
tions of norepinephrine as a mediator of anti-inflammatory effects
(Sternberg, 2006). In previous studies, norepinephrine was elevated in
adolescent CFS as compared to healthy controls (Sulheim et al., 2014;
Wyller et al., 2010) and was suggested to potentially have a central role
in neuroendocrine-immunological crosstalk in CFS pathogenesis. In-
terestingly, a very recent study in mice has revealed the unique mole-
cular machinery of the sympathetic neuron- associated macrophages
(SAMs) which participate in controlling regional norepinephrine levels
(Pirzgalska et al., 2017). SAMs express the β-adrenergic receptors and
sodium-dependent neurotransmitter transporter (NAT1/solute carrier

Fig. 3. Association between plasma norepinephrine
stratification in the NorCAPITAL population and
clinical symptoms. A. Chalder Fatigue
Questionnaires scores (CFQ) over time were sig-
nificantly higher in the Low plasma norepinephrine
group (n= 39) compared to the High plasma nor-
epinephrine group (n=40). Data are given as
mean ± SEM (p-val= 0.023, test of between-sub-
jects effect, repeated measures ANOVA). B.
Differences in Functional Disability Inventory score
(FDI) over time between the low (n=43) and high
(n=48) plasma norepinephrine were shown. Data
are given as mean ± SEM (p-val= 0.472, test of
between-subjects effect, repeated measures
ANOVA).
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protein SLC6A2) for reuptake of norepinephrine, thereby terminate its
effect and contribute in maintaining extracellular norepinephrine bal-
ance. In addition, SAMs were suggested to play a key role in the pre-
vention of over-secretion of norepinephrine into the blood stream
during enhanced sympathetic activity (Pirzgalska et al., 2017). Inter-
estingly, mutation of the SLC6A2 impairing synaptic norepinephrine
clearance was suggested to be associated with orthostatic intolerance
(Shannon et al., 2000) which is a common clinical phenomenon in CFS
(Medicine Io, 2015).

Strikingly, these two patient subgroups differed in their patterns of
associations between the immune-gene sets and other biomarkers.
Several strong associations between markers of autonomic nervous
activity (plasma norepinephrine, ratio of heart rate frequencies (LF/
HF)) and the immune-gene sets were found almost exclusively in Group
P2, whereas immune markers (hsCRP) were associated to several im-
mune-gene sets in Group 1P. Also, in Group 1P only, six gene sets were
found to be significantly associated with TGF-β3 (Table S7). This is
consistent with our previous finding on the association between ex-
pression levels of the CXC motif chemokine receptor 5 gene (CXCR5), B
cell-activating factor receptor gene (BAFF-R) and TGF-β (Wyller et al.,
2017). Of note, TGF-β plays an important role in the regulation of cell
proliferation, differentiation, apoptosis and is related to a number of
human diseases. The LF/HF ratio (an index of sympathetic vs. para-
sympathetic heart rate control) was positively correlated with 8 gene
sets in Group 2P, but only 2 gene sets in Group 1P (Table S8). This
corroborates our previous finding of an association between gene ex-
pression and the LF/HF index among CFS patients (Nguyen et al.,
2017), and is also consistent with other reports of an inverse relation-
ship between the inflammatory markers and reduced parasympathetic
nervous activity (Cooper et al., 2015). Taken together, these results
support previous findings of a potential associated deregulation in en-
docrine/autonomic and immune system in CFS (Wyller et al., 2016;
Wyller et al., 2009, 2011). Thus, the molecular mechanisms underlying
such alteration should be scrutinized in further studies.

Finally, difference in plasma norepinephrine levels between Group
1P (n=12) vs. Group 2P (n= 12) appeared to be useful in classifying a
larger patient group from the same project into two subgroups (Low vs.
High norepinephrine) which differed significantly in the fatigue score
over time (Fig. 3A); a non-significant trend was observed for functional
disability (Fig. 3B). Generally, the cohort with the highest plasma
norepinephrine levels (similar to Group 2P) had less serious symptoms
and disabilities, supporting the idea of increased sympathetic activity in
CFS patients as a compensatory mechanism in order to maintain im-
mune homeostasis. At week 8, patients who received clonidine treat-
ment could result in the lower level of plasma norepinephrine (Sulheim
et al., 2014) compared to baseline. In our preliminary analysis using the
RM ANOVA model of CFQ/FDI over time, the effect of treatment allo-
cation between the low and high norepinephrine groups was not sig-
nificant, thus both clonidine and placebo groups were pooled together
in the final RM ANOVA analysis as shown in Fig. 3.

With respect to genetic determinants that are associated with CFS,
very few studies put genes into their interactive contexts, except for one
study in which integrated networks and genetic variants analysis
identified a network of 20 candidate genes associated with the
Tryptophan hydroxylase 2 gene (TPH2) (Presson et al., 2008); which
encodes the THP2 protein that catalyzes the rate limiting step in the
serotonin biosynthesis pathway. By integrating weighted gene co-ex-
pression network analysis on microarray data and genetic variants of 76
CFS patients, the study identified the gene network to be associated
with CFS severity (Presson et al., 2008). While most of the efforts in
molecular CFS studies have been looking at single associated loci, the
fluctuation coming from networks of genes or proteins may be more
relevant. Therefore, in addition to per gene measurement, the present
study shows that it is worthwhile to calculate the effect of the corre-
sponding deregulated hubs of genes. Importantly, the delineation of
CFS patients into two such subgroups with differences in plasma

norepinephrine and clinical symptoms suggests that stratification of
participants might be useful to reduce the heterogeneity in CFS.

In conclusion, we identified a 29 immune-gene sets linked to plasma
norepinephrine and naïve CD4+ T cells which can delineate subgroups
of CFS patients and the potential involvement of neuro-immune dys-
regulation in CFS pathophysiology. The delineation of patients into two
subgroups with differential norepinephrine levels suggests plasma
norepinephrine might be used to stratify patient in future clinical stu-
dies; e.g. novel therapeutic strategies might be designed and tested in
patients with similar levels of norepinephrine.
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