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A B S T R A C T

Glutamatergic α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs) carry the bulk of
excitatory synaptic transmission. Their modulation plays key roles in synaptic plasticity, which underlies hip-
pocampal learning and memory. A dysfunctional glutamatergic system may negatively affect learning abilities
and underlie symptoms of attention-deficit/hyperactivity disorder (ADHD). The aim of this study was to in-
vestigate whether the expression and function of AMPARs were altered in ADHD. We recorded AMPAR mediated
synaptic transmission at hippocampal excitatory synapses and quantified immunogold labelling density of
AMPAR subunits GluA1 and GluA2/3 in a rat model for ADHD; the spontaneously hypertensive rat (SHR).
Electrophysiological recordings showed significantly reduced AMPAR mediated synaptic transmission at the
CA3-to-CA1 pyramidal cell synapses in stratum radiatum and stratum oriens in SHRs compared to control rats.
Electronmicroscopic immunogold quantifications did not show any statistically significant changes in labelling
densities of the GluA1 subunit of the AMPAR on dendritic spines in stratum radiatum or in stratum oriens.
However, there was a significant increase of the GluA2/3 subunit intracellularly in stratum oriens in SHR
compared to control, interpreted as a compensatory effect. The proportion of synapses lacking AMPAR subunit
labelling was the same in the two genotypes. In addition, electronmicroscopic examination of tissue morphology
showed the density of this type of synapse (i.e., asymmetric synapses on spines), and the average size of the
synaptic membranes, to be the same. AMPAR dysfunction, possibly involving molecular changes, in hippo-
campus may in part reflect altered learning in individuals with ADHD.

1. Introduction

Several studies have focused on monoaminergic neurotransmission
in the pathogenesis of attention-deficit/hyperactivity disorder (ADHD)
[1], but the glutamatergic system may also be disturbed [2–9].

Glutamate is the main excitatory signaling molecule in the brain and
mediates its effect on neighboring neurons by binding to glutamate
receptors, especially abundant in the postsynaptic density (PSD) on
spines. Glutamatergic α-amino-3-hydroxy-5-methyl-4-iso-
xazolepropionic acid receptors (AMPARs) are ionotropic receptors that
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open their ion channel rapidly upon glutamate binding resulting in a
fast depolarization of the cell, and carry the bulk of synaptic trans-
mission at excitatory synapses. AMPARs are also involved in long term
potentiation (LTP) and long term depression (LTD), which are long
term synaptic changes thought to underlie hippocampal learning
[10–14]. AMPARs are tetramers comprised of four types of receptor
subunits (GluA1-4), and in CA1 hippocampal neurons most AMPARs
are heterotetramer receptors consisting of the subunit proteins GluA1
and GluA2 (GluA1/2Rs), or of GluA2 and GluA3 (GluA2/3Rs) [15].
Under basal conditions, GluA1/2Rs contribute up to 80% of the sy-
naptic transmission, while GluA2/3Rs contribute only 20% [16].
GluA2/3 containing AMPARs continuously cycle in and out of synaptic
membranes independent of activity [17], whereas the membrane den-
sity of GluA1 increases or decreases upon induction of LTP [18] or LTD
[19], respectively.

Hyperactivity, impulsivity and inattention are behavioural symp-
toms of ADHD [20]. Dysfunctional learning is also observed [8,21–23].
Children with ADHD are sensitive to delay in reinforced learning, which
may result in impulsivity and inattention. Furthermore, they have
problems to extinguish earlier reinforced performance, which may re-
sult in an accumulation of reactions seen as hyperactivity [8,24]. The
key features characterizing children with ADHD are present in the
spontaneously hypertensive rat (SHR), which is validated as the best
animal model of ADHD [25,26]. Studies imply that SHR and children
with ADHD struggle with reinforcement and extinction in learning
processes hypothesized to underlie symptoms of ADHD [8,27–30]. LTP
and LTD are commonly referred to as cellular correlates of learning.
However, several forms of synaptic plasticity may contribute to
learning and memory processes [31], such as changed intrinsic excit-
ability of neurons in hippocampus [32]. Multiple brain regions, in-
cluding the hippocampus are important in learning and memory [33].
Dysfunctional connection between hippocampus and other brain re-
gions [34] and reduced hippocampal volume in children with ADHD
[35] could affect learning processes and further result in ADHD-
symptoms [8]. Recent research supports the view that hippocampus
dependent learning is altered in children with ADHD [36]. Importantly,
hippocampus is a region being explored for the identification of ADHD
pathology. Studies from animal models of the disorder suggest ab-
normalities in neuronal signalling systems within hippocampus
[37–40]. However, more studies are needed to further elucidate the
potential role of hippocampus in ADHD. Hence, we used SHR as an
animal model of ADHD, and its genetic precursor Wistar Kyoto rat
(WKY), as control in order to investigate basal synaptic transmission by
recording field excitatory postsynaptic potential (fEPSP)s in CA1
stratum radiatum and stratum oriens of the hippocampus as a function
of afferent stimulation. We simultaneously investigated excitability of
the CA1 pyramidal cells by recording the threshold for generation of the
population spikes. GluA1 and GluA2/3 labelling densities were quan-
tified on dendritic spines of CA1 pyramidal cells both in stratum ra-
diatum and stratum oriens by immunogold electron microscopy. Fi-
nally, we examined tissue morphology by quantifying synapse density,
the proportion of labelled synapses and synapse size.

2. Material and methods

2.1. Animals

The animal experiments were carried out in accordance with pro-
cedures and guidelines for animal experiments. Experiments were
performed on hippocampal slices from SHR from Charles River,
Germany (SHR/NCrl) and WKY from Harlan Europe, UK (WKY/NHsd).
SHR/NCrl is the most extensively used, and best evaluated animal
model of ADHD [25,26,41], and WKY/NHsd is its optimal control [42].
The rats were sacrificed at p28 (at an age where SHR display an ADHD-
like behaviour, but prior to development of hypertension and asso-
ciated diseases in these models). All rats used in our experiments were

male.

2.2. Electrophysiology

The electrophysiological experiments were performed similarly as
describes in earlier experiments [4]:

2.2.1. Preparation of hippocampal slices
Experiments were performed on hippocampal slices prepared either

from WKY (n=7) or SHR (n=8). The animals were killed with in-
halation anaesthetic desflurane (Suprane, Baxter), the brains were re-
moved and transverse slices (400 μm) were cut from the middle portion
of each hippocampus with a vibroslicer in artificial cerebrospinal fluid
(ACSF, 4 °C, bubbled with 95% O2 - 5% CO2, pH 7.4) containing (in
mM): 124 NaCl, 2 KCl, 1.25 KH2PO4, 2 MgSO4, 1 CaCl2, 26 NaHCO3 and
12 glucose. Slices were placed in a humidified interface chamber where
the temperature was kept constant at 30 °C and they were perfused with
ACSF now containing 2mM CaCl2.

2.2.2. Stimulation, recording and analysis
Orthodromic synaptic stimuli (< 400 μA, 0.1 Hz) were delivered

through a tungsten electrode placed in either stratum radiatum or in
stratum oriens. The presynaptic volley and the fEPSP were recorded by
a glass electrode (filled with ACSF) placed in the corresponding sy-
naptic layer (stratum radiatum or stratum oriens), while another elec-
trode placed extracellularly in the pyramidal soma layer (stratum pyr-
amidale) monitored the population spike. The afferent fibres in one of
the pathways were stimulated at 0.1 Hz with increasing strength (in-
creasing the stimulus duration in steps of 10μs from 0 to 90μs, five
consecutive stimulations at each step). To assess synaptic transmission,
we measured the amplitude (mV) of the presynaptic volley and the
fEPSP (mV) at the different stimulation strengths. The population spike
threshold was defined as the appearance of a small negative deflection
close to the maximum soma recorded fEPSP positivity. Data were
pooled across rats of the same genotype and are presented as
mean ± SEM and statistical significance of differences was evaluated
using a linear mixed model analysis (SAS 9.2).

2.3. Electron microscopy

2.3.1. Immunogold procedure and analysis
The tissue preparation, immunogold procedure and analysis were

performed as in previous experiments [38,43,44] (with the exception of
antibody treatment). During the immunogold procedure hippocampal
sections from WKY and SHR were incubated with primary antibody
rabbit anti-GluA1 (AB 1504, Millipore; 1:100) and rabbit anti GluA2/3
(AB 1506, Millipore; 1:50), and with secondary antibody goat anti-
rabbit IgG coupled to 10 nm colloidal gold (British Biocell International,
UK; 1:20). We have previously tested the specificity of the primary
antibodies [44]. The proportions of labeled synapses, synapse density
and synapse size between WKY and SHR were tested for statistical
significance using Student’s t-test.

2.3.2. Immunogold quantification and statistical model
Both membrane associated and intracellular immunogold particles

were quantified on the postsynaptic membrane overlying the PSD and
up to 100 nm in the intracellular direction in the layer stratum radiatum
and statum oriens [43]. The GluA1 immunogold labelling was analyzed
in totally 92+92 spines from stratum radiatum and 75+81 spines
from stratum oriens in 4 WKYs and 5 SHRs respectively. The GluA2/3
immunogold labelling was analyzed in totally 86+82 spines from
stratum radiatum and 52+ 41 spines from stratum oriens in 5 WKYs
and 3 SHRs, respectively. Statistical significance of immunolabelling
was evaluated using Poisson mixed model [45]. We analyzed the GluA1
and GluA2/3 data separately. We let Yijkl be immunogold counts for
animal i, layer j (Oriens and Radiatum), region k (Intracellular and
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Membrane), and repetition l. We modeled initially Yijkl as a Poisson
mixed model with log link:

Yijk|ui,vij,wijk ∼ Poisson(λijklAijkl) (1)

λijkl = eβg(i),j,k+ui+vij+wijk+εijkl.

Here, Aijkl is the size of the observation area for Yijkl, and βgjk are
fixed effects. The random effects represent variation between animals
(ui), between layers (vj), between regions (wijk) The random effects εijkl
are added to model possible overdispersion, i.e. a greater variability
than expected from the Poisson distribution. The term λijkl is the in-
tensity of the Poisson distribution and is the expected number of par-
ticles in an area of unit size. Models of different complexity were tested
by means of likelihood ratio tests. Based on these tests, the model could
be simplified by omitting variation between animals, layers and re-
gions. Only, variation inside regions was retained. Our final model was
then:

Yijk|ui,vij,wijk ∼ Poisson(λijklAijkl) (2)

λijkl = eβg(i),j,k+εijkl.

The fixed effects and variance were estimated by maximum like-
lihood using Stata function meqrpoisson.

3. Results

3.1. Reduced excitatory synaptic transmission in SHR

In order to assess changes in excitatory synaptic transmission and
synaptic excitability we recorded simultaneously either from the apical
(stratum radiatum) or from the basal dendritic (stratum oriens) layer,
and from the soma layer in the CA1 region of hippocampal slices from
SHR (n= 8) and WKY (n= 7). We measured the amplitude of the fiber
volley and the fEPSP elicited by different stimulation strengths and, in
addition, the corresponding threshold for generation of a population
spike.

In SHRs, stratum radiatum evoked fEPSPs (1.3 mV ± 0.1mV,
n=51 and 2.1mV ± 0.1mV, n= 43) for presynaptic fibre volleys of
0.5 and 1.0mV were severely reduced compared to those elicited in
WKYs (1.7 mV ± 0.1mV, n=48 and 2.5mV ± 0.1mV, n= 36)
(p < 0.05) (Fig. 1A,C), indicating a reduced synaptic transmission. The
excitability tested by synaptic activation was in SHRs, as indicated by
threshold for the generation of a population spike (SHR: 1.7mV ±
0.1mV, n= 51; WKY: 2.1 mV ± 0.1mV, n=48) (p < 0.05)
(Fig. 1A).

In a similar manner in SHRs, stratum oriens evoked fEPSPs
(0.7 mV ± 0.1mV, n= 39 and 1.2 mV ± 0.1mV, n= 33) for pre-
synaptic fibre volleys of 0.5 and 1.0mV showed a significant reduction
in size compared to those elicited in WKYs (1.1 mV ± 0.1mV, n=35
and 1.7mV ± 0.1mV, n=28) (p < 0.05) (Fig. 1B,D), indicating a
reduced synaptic transmission. The excitability tested by synaptic ac-
tivation was unchanged in SHRs (SHR: 1.2 mV ± 0.1mV, n=33;
WKY: 1.5 mV ± 0.1mV, n= 33) (p= 0.25) (Fig. 1B). At P28, SHRs
exhibited a significantly reduced excitatory synaptic transmission
(> 25%) both in the radiatum and the oriens pathways, whereas neu-
ronal excitability remained unchanged in the oriens pathway when
tested by synaptic activation.

3.2. Electron microscopy

3.2.1. Synapse density, size and labelling
There were no significant changes in synapse density, size or the

amount of labelled synapses between WKY and SHR. The density of
asymmetric synapses on spines (measured as mean number per μm2)
was quantified by recording the clearly identifiable PSDs in stratum
radiatum and stratum oriens in WKY and SHR. The density of synapses

in stratum radiatum showed (mean number per μm2±SEM)
0.0598 ± 0.0154 in SHR and 0.0602 ± 0.0079 in WKY (p=0.98);
stratum oriens showed 0.0378 ± 0.076 in SHR and 0.0334 ± 0.0069
in WKY (p= 0.70). Further, there was no significant difference in the
size of the synaptic membrane, as estimated by the length of the PSD
profile (mean nm ± SEM): stratum radiatum 220 ± 8, and 211 ± 7
(p= 0.46), stratum oriens 214 ± 9 and 227 ± 9 (p= 0.37) in SHR
and WKY, respectively.

The distribution of immunogold particles was quantified on sy-
napses that had at least one particle over the synaptic membrane and/
or the spine cytosol (Fig. 2). Some of the synapses were devoid of im-
munogold particles, at the postsynaptic membrane as well as overlying
the spine cytoplasm. The two genotypes showed no significant differ-
ences in the numbers of such non-labelled synapses (mean % of all
synapses ± SEM): GluA1 stratum radiatum 60 ± 6 in SHR and
59 ± 5 in WKY (p=0.90), GluA1 stratum oriens 52 ± 3 in SHR and
58 ± 7 in WKY (p=0.49), GluA2/3 stratum radiatum 60 ± 7 in SHR
and 70 ± 6 in WKY (p= 0.90), GluA2/3 stratum oriens 77 ± 3 in
SHR and 68 ± 8 in WKY (p= 0.33).

3.2.2. GluA1 and GluA2/3 immunogold labelling analysis and results
The estimated p-values and the confidence intervals of the pairwise

differences are given in Tables 1–4.

3.2.2.1. GluA1 quantification. There were no statistically significant
changes in GluA1 labelling densities in stratum radiatum or in stratum
oriens in SHR compared to WKY (p > 0.05). The level of total,
membrane and intracellular GluA1 labelling were similar between the
two strains in stratum radiatum (Fig. 2A,B) and stratum oriens
(Fig. 2C,D), however, there was a tendency towards a decrease in
intracellular GluA1 labelling in SHR compared to WKY in stratum
oriens (p= 0.08). For statistics, see Table 1. There were no significant
changes in labelling densities between stratum oriens and stratum
radiatum within WKY or SHR (Table 2), although WKY tended to have
stronger intracellular labelling in stratum radiatum compared to
stratum oriens (p= 0.071).

3.2.2.2. GluA2/3 quantification. There was a statistically significant
increase in intracellular GluA2/3 labelling level in stratum radiatum
in SHR compared to WKY (p= 0.01), but no statistically significant
differences in total or membrane GluA2/3 labelling levels between
WKY and SHR (p > 0.05) (Fig. 2E,F). There were no significant
differences between WKY and SHR in stratum oriens when we
quantified GluA2/3 labelling densities in the different areas (total,
membrane and cytoplasm) of dendritic spines (p > 0.05) (Fig. 2G,H).
See Table 3 for statistics. There was no difference between labelling
intensity of GluA2/3 between stratum oriens and stratum radiatum
within WKY and SHR (Table 4).

4. Discussion

In the current study, we used SHR/NCrl as an animal model of
ADHD, and WKY/NHsd as control. SHR/NCrl is a genetic animal model
of ADHD. All SHRs display the core symptoms of ADHD
[4,25,26,46–48], including learning disabilities [49,50]. However, it is
important to compare SHR/NCrl with its best matched control, the
WKY/NHsd [48]. Despite the fact that this rat is the best available
model of ADHD-C, the clinical significance of the results must be in-
terpreted with caution, as non-ADHD phenomena could be associated
with these rats.

We investigated the threshold for generation of population spikes
and the AMPAR mediated synaptic transmission in stratum radiatum
and stratum oriens of hippocampus CA1 in the SHR/Ncrl and WKY/
NHsd control. We also quantified AMPAR labelling density on dendritic
spines of CA1 pyramidal neurons, which are abundant in both stratum
oriens and stratum radiatum where they are mainly contacted by
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presynaptic glutamatergic terminals of axons, including the Schaffer
collaterals, originating from CA3 pyramidal cells. The electro-
physiological recordings demonstrated reduced AMPAR mediated sy-
naptic responses in both stratum oriens and stratum radiatum. These
results confirm the results from previous recordings in SHR showing
decreased AMPAR mediated synaptic transmission in stratum radiatum
[4]. In the current study, the results also extend to be significant in
another region of the hippocampus, the stratum oriens. The reduction
in synaptic efficacy, represented by the observed 16% to 36% reduction
in fEPSP in SHR relative to WKY (our Fig. 1A), corresponds to reduc-
tions in fEPSP amplitude previously shown to be associated with sig-
nificant reductions in learning. For example, a recent paper [51] re-
ported that a 30% reduction of perforant path evoked fEPSP in the
dentate gyrus after inhibition of β-adrenoceptors with propranolol
(their Fig. 2b) was associated with a dramatic reduction in the acqui-
sition of active avoidance behaviour (their Fig. 2a). Relevant for
AMPAR function, behaviour, electrophysiology and microdialysate
biochemistry were recorded simultaneously in the same freely moving
rats, showing that the changes included a 60% reduction in extra-
cellular glutamate at the recording site (their Fig. 2c).

The reduction in synaptic efficacy recorded in our experiments
could not be explained by a reduction in the number or size of the
synapses, or by reduced levels of GluA1s or GluA2/3 s, as shown by
immunogold quantifications. Furthermore, the amount of labelled sy-
napses was similar between the two strains. The CA3-to-CA1 synapses
in hippocampus comprise a population of “silent” synapses lacking
AMPAR [52]. The proportion of unlabelled CA3-to-CA1 synapses ob-
served in stratum radiatum of CA1 in the present study (60%–70%) is
larger than that observed by Takumi et al. (25%–30%) [52]. This dif-
ference is likely caused by the fact that the authors used different sets of
antibodies, combined antibodies to GluA1, GluA2/3 and GluA4, and
observed each synapse in three consecutive sections, resulting in an

increased probability of labelling an AMPAR complex, whereas we used
single antibodies on single sections. Importantly, the proportion of sy-
napses with and without AMPAR labelling did not differ between SHR
and WKY controls, excluding this as an explanation of the observed
difference in AMPAR function.

The reduced synaptic transmission is not verified by low AMPAR
labelling density. Importantly, genetic variants or phosphorylation and
other posttranslational regulations may change receptor binding site,
membrane trafficking, ability to interact with other receptors or ki-
netics, changes that could impair receptor function without affecting
receptor density. Such changes may modify synaptic strength and cel-
lular correlates of learning [53]. Molecular interactions are known to
occur between AMPARs and dopamine receptors [54,55]. We pre-
viously demonstrated low levels of dopamine D5 receptors [38] as well
as a significant N-methyl-D-aspartate receptor (NMDAR) subunit NR2B
dependent contribution to LTP in hippocampus in SHR [4]. Dopamine is
an important neuromodulator of glutamatergic signalling and may af-
fect both function and delivery of glutamatergic receptors to the sy-
napse trough protein kinase A dependent phosphorylation [56,57]. The
reduced transmission observed in SHR could be related to impaired
function of GluA1/2Rs, which contribute 80% of the basal synaptic
transmission [16]. We found significantly higher labelling density of
GluA2/3 intracellularly in SHR. However, consistent with the in-
tracellular location observed, synaptic efficacy was not rescued by the
increased level of GluA2/3 in SHR. Even if some of the added GluA2/
3Rs get inserted into the membrane, they may not improve function,
due to the fact that GluA3Rs have considerably lower conductance and
they desensitize three times faster than GluA1Rs [58]. Interestingly, we
found the increased density of GluA2/3 intracellularly in SHR up to
100 nm into the spine head. In rat hippocampal neurons, AMPARs are
concentrated into a few nanodomains of ∼70 nm inside the spine head
[59]. PSD-95 is important for the assembly of AMPARs in intracellular

Fig. 1. Reduced glutamatergic transmission in
the hippocampal CA3-to-CA1 radiatum and
oriens synapses in SHR.
A) fEPSP amplitudes in stratum radiatum (Rad)
evoked by prevolleys of 0.5 and 1.0 mV am-
plitudes in WKY (open columns) and SHR
(filled columns). The columns to the right de-
pict the fEPSPs amplitudes necessary to elicit a
just detectable population spike in the two
genotypes. Data are shown as mean+S.E.M. *
indicates p < 0.05. (*) indicates p= 0.05.
B) As in A, but results are from stratum oriens.
C) Each trace is the mean of five consecutive
synaptic responses in stratum radiatum (Rad)
evoked by different stimulation strengths in
slices from WKY (left) and SHR (right). The
prevolleys preceding the fEPSPs are indicated
by an open (WKY) or filled circle (SHR).
D) As in C, but the recordings are from stratum
oriens.
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Fig. 2. AMPAR subunit GluA1 and GluA2/3 immunogold
labelling.
Electron micrographs showing a glutamatergic terminal (t)
with vesicles (v) contacting a postsynaptic dendritic spine
(s) in CA1 stratum radiatum and stratum oriens of hip-
pocampus. GluA1 and GluA2/3 subunits of the AMPAR
were labelled by immunogold particles (red arrowheads)
and quantified along the postsynaptic membrane over-
lying the PSD (between black arrowheads) and in the cy-
toplasm of dendritic spines. (Scale bar= 100 nm).The
Micrographs from WKY (left) and SHR (right) show im-
munogold labelling of GluA1 in stratum radiatum (A,B)
and stratum oriens (C,D), and GluA2/3 in stratum ra-
diatum (E,F) and stratum oriens (G,H).

Table 1
GluA1: Differences between groups (SHR - WKY). Estimates, p-values and 95%
confidence intervals.

Layer Region Estimate P-value Lower Upper

Oriens Intracellular −0.081 0.739 −0.559 0.396
Oriens Membrane −0.202 0.206 −0.111 0.515
Radiatum Intracellular −0.360 0.077 −0.759 0.039
Radiatum Membrane −0.030 0.839 −0.329 0.267
Oriens Total 0.134 0.245 −0.081 0.359
Radiatum Total −0.122 0.250 −0.331 0.086

Table 2
GluA1: Differences between layers (radiatum - oriens). Estimates, p-values and
95% confidence intervals.

Group Region Estimate P-value Lower Upper

WKY Intracellular 0.389 0.071 −0.033 0.811
WKY Membrane 0.018 0.911 −0.293 0.329
SHR Intracellular 0.110 0.637 −0.347 0.567
SHR Membrane −0.215 0.160 −0.515 0.085
WKY Total 0.119 0.284 −0.099 0.336
SHR Total −0.137 0.215 −0.353 0.079
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nanodomains: Overexpression of PSD95 is followed by an accumulation
of AMPAR in intracellular domains and increased miniature excitatory
postsynaptic current (EPSC) amplitude [60], whereas reduced expres-
sion of PSD-95 leads to decreased numbers of AMPARs per domain and
reduced miniature EPSC amplitude [59,61]. The function of in-
tracellular AMPAR clusters is currently not fully understood but they
possibly affect synaptic transmission by modifying intracellular cluster
size, position, or receptor content with no changes in total receptor
number [61,62]. The various pools of AMPARs and their dynamic may
have impacts on several forms of synaptic plasticity and learning, and
may be important therapeutic goals in the future treatment of brain
disorders [62–64].

The last decades, glutamate receptors have been the target for novel
drug development to treat neurological disorders [65]. As summarized
by Froestl et al. (2014), agents acting on different types of glutamate
receptors may be useful to treat ADHD [65]. AMPAR modulators en-
hance cognitive performance [66] and reduce hyperactivity in rats [67]
and show promising results in children with ADHD [67]. However,
glutamate receptors are ubiquitously expressed in the brain and phar-
macological manipulation of AMPARs may have a broad impact on CNS
function and behaviour. Consequently, intracellular protein complexes
controlling the assembly of AMPARs into different subcellular domains
are currently emerging as more specific therapeutic goals in the treat-
ment of neurodevelopmental disorders [68,69], as these proteins are
more heterogeneously expressed in the brain, as compared to AMPARs.
Hence, it would be interesting to further study potential mechanisms
underlying the abnormal assembly of AMPAR into different pools in
SHR, as observed in our study.

The lack of specific antibodies for each of the specific GluA1-3
subunits is a methodological concern. The GluA1 antibody used in our
study recognizes the c-terminus of the GluA1 peptide sequence. In CA1
pyramidal cells, GluA1/2 heteromers dominate (only 8% are GluA1
homomers) [15], therefore, the GluA1 labelling densities quantified in
our study mainly reflect GluA1/2 heteromers. The GluA2/3 antibody
used in this study, detects amino acid sequences in the c-terminal of
both GluA2 and GluA3, and will consequently label both GluA1/2Rs
and GluA2/3Rs, which are present in nearly equal proportions in CA1
hippocampus [15]. Nevertheless, the GluA2/3 antibody probably
mainly binds GluA2/3Rs as these receptors have twice as many po-
tential antibody binding sites compared to GluA1/2Rs. A previous ge-
netic study has shown increased GluA2 mRNA, but decreased GluA3
mRNA in SHR compared to WKY [70]. However, we were not able to

distinguish between these two subunits in this study.
Low AMPAR mediated transmission accompanied by low expression

of surface GluA1 and GluA2 AMPAR subunits has previously been ob-
served in prefrontal cortex in SHR [71]. However, total amount of
GluA1 and GluA2 levels was similar between WKY and SHR, as ob-
served in our study. Interestingly, methylphenidate a frequently used
treatment in ADHD, normalizes synaptic transmission in prefrontal
cortex in SHR. Methylphenidate may enhance diffusion, and in-
corporation of AMPAR at hippocampal CA3-CA1 synapses [72]. Under
basal conditions, GluA1/2 and GluA2/3 heteromers are present in the
postsynaptic membrane of dendritic spines. Additional receptors may
be recruited to the postsynaptic membrane overlying the PSD by lateral
diffusion from extrasynaptic sites or by direct exocytosis of receptors
present in vesicular organelles in the cytoplasm of the spine. The areas
we investigated were limited to the postsynaptic membrane overlying
the PSD, and the area directly below the PSD inside the spine. Hence, it
is possible that there exist changes in receptor level that was not
identified in this study. In conclusion, our results suggest alterations in
glutamate signaling in hippocampus in SHR, which could disturb pro-
cesses of learning in ADHD.
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