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Abstract
A total mixture of 29 persistent organic pollutants (POPs) modelled from Scandinavian blood concentrations was used to 
expose human A-498 kidney cells for 24 h over a concentration range spanning below to above blood level (1/10x, 1x, 50x, 
100x, 500x). Its constituent submixtures (PFAA, Br, Cl) and co-mixtures (PFAA + Br, PFAA + Cl, Br + Cl) were also tested. 
Valinomycin (12 µM) was used as a cytotoxic comparative compound. Cell number (CN), nuclear area (NA), nuclear intensity 
(NI), mitochondrial membrane potential (MMP), and mitochondrial mass (MM) were assessed using high content analysis 
(HCA). Only the co-mixtures (PFAA + Cl, PFAA + Br) at 50x and 50x, 500x decreased CN, respectively. NI was increased 
by the total mixture at 500x and Cl mixture at all concentrations tested. MMP was increased by the total mixture at 100x and 
500x, PFAA at 1x, Br + Cl and PFAA + Cl at 100x and 500x, respectively. MM was decreased by the total mixture at 500x. In 
contrast, valinomycin decreased CN and surviving cells showed a decrease in MMP and an increase in MM. In conclusion, 
POP exposure altered mitochondrial metabolism and induced cell death via an alternative mechanism to valinomycin. Only 
specific combinations of individual chemical classes, but not the total mixture, affected cell number.

Keywords Polychlorinated biphenyls · Organochlorinated pesticides · Brominated flame retardants · Perfluorinated 
alkylating agents · Cytotoxicity · High content analysis

Introduction

Persistent organic pollutants (POPs) are chemicals that per-
sist in the environment for decades and can bioaccumulate or 
biomagnify in living organisms. POPs tend to accumulate in 
the metabolic organs including kidneys and liver which may 
lead to histological alterations in these organs (Tashla et al. 

2018). We have previously shown that POP mixtures can 
have detrimental effects on the health of liver cells (Wilson 
et al. 2016). The kidney, another organ, which plays a major 
role in excretion, may also be a target of cytotoxicity for 
these compounds. Continuous exposure to POPs may lead 
to end-stage nephropathy in addition to other diseases such 
as diabetes and cardiovascular illnesses (Grice et al. 2017).

Since POPs are widely distributed in geographical 
regions of the world, various animal studies have highlighted 
the negative impact of POPs on wildlife. Wild arctic foxes 
exposed to a cocktail of POPs including organochlorine pes-
ticides (OCPs) and polychlorinated biphenyls (PCBs) show 
signs of kidney and liver damage (Pizzorno 2015). PCBs 
and OCPs have also been found to trigger glomerular lesions 
in Baltic seals and dilation of glomerular capillaries and 
mesangial deposits in fish (Bergman et al. 2001; Koponen 
et al. 2001).

Perfluorinated alkyl agents (PFAAs) are a new class of 
POPs associated with reduction in kidney function and 
increased uric acid levels in humans (Kataria et al. 2015). 
Human mortality studies have shown an association between 
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kidney cancers and occupational exposure to PFOA in the 
US population (Leonard et al. 2008; Steenland and Woskie 
2012). A large cohort study on adults consuming drink-
ing water from near a chemical plant in the US and work-
ers directly exposed to PFAAs show positive association 
between cumulative perfluorooctanoic acid (PFOA) expo-
sure and kidney cancer (Barry et al. 2013). These studies 
have highlighted the harmful effects of individual POPs 
particularly PFAAs on excretory organs including kidneys. 
However, in real-life situations both animals and humans 
are exposed to a mixture of chemicals that can interact to 
enhance or suppress the overall health effect. Therefore, ana-
lysing exposure mixtures based on real-life human concen-
trations is a more realistic approach for assessing potential 
health effects.

In the current study, we have used defined POP mixtures, 
modelled on levels found in the blood of the Scandinavian 
population. A total of 29 POPs were selected as described 
by Berntsen et al. (2017), based on their prominence in 
human blood, breast milk and/or food according to a litera-
ture review on levels in the Scandinavian population (Haug 
et al. 2010; Knutsen et al. 2008; Polder et al. 2008, 2009; 
Van Oostdam et al. 2004). This total mixture contained three 
chemical classes of POPs, i.e. chlorinated, brominated, and 
perfluorinated chemicals. In addition, submixtures were 
created representing each individual class: a chlorinated 
(Cl) mixture, brominated (Br) mixture, and a perfluorinated 
(PFAA) mixture, respectively. Finally, co-mixtures repre-
senting possible binary combinations of each class were 
also generated: chlorinated + brominated (Cl + Br) mixture, 
perfluorinated + brominated (PFAA + Br) mixture and per-
fluorinated + chlorinated (PFAA + Cl) mixture. A summary 
of these POP mixtures can be found in Table 1. Further 
details on the POP mixture composition and selection crite-
ria can be found in Berntsen et al. (2017). The total mixture, 
sub-mixtures and co-mixtures were tested in a concentra-
tion dependent manner over a range above and below human 
blood levels (1/10x to 500x).

POP mixtures are known to have cytotoxic effects on 
the excretory organs (Nicole 2013). Traditional cytotoxic-
ity assays are sometimes insensitive to the cellular response 
towards chemicals. Therefore, sensitive pre-lethal mecha-
nistic cellular assays are used to determine endpoint specific 
chemical responses using cell lines (Xu et al. 2004). In the 
current study, we have used valinomycin as a comparative 
chemical for the induction of toxicity via effects on cellular 
nuclear and mitochondrial parameters (Abdalah et al. 2006; 
Abraham et al. 2008).

High content analysis (HCA) is a platform used to study 
cellular parameters where subtle or pre-lethal cytotoxic 
effects of human relevant POP mixtures can be analysed. 
Multiple cellular health endpoints can be measured fol-
lowing exposure to POPs in a single experimental setting 

(Anderl et al. 2009). This provides insights into the health 
status of cells, including gross cytotoxicity and subtle pre-
lethal cytotoxic effects, which can indicate potential cellu-
lar function impairment. A decrease in cell number is an 
indicator of gross cytotoxicity. The changes in nuclear area 
upon exposure to chemicals may indicate initiation of the 
cell death pathways. A decrease in nuclear area and con-
densation of chromatin indicates that a cell might be under-
going apoptotic cell death (Elmore 2007). Necrosis is an 
alternative cell death pathway whereby both the nuclear and 
cell area increase (Galluzzi et al. 2018). Subtle indicators 
of cell health include changes in mitochondrial membrane 
potential and mitochondrial mass (Youle and van der Bliek 
2012). This in-depth analysis using HCA has advantages 
over gross cytotoxicity assays, which only indicate that a cell 
has died, because some detrimental health effects may still 
occur through pre-lethal cytotoxicity, even if a cell survives 
exposure.

In the present study, we focused on determining the 
effects of complex mixtures of POPs on the A-498 human 
epithelial kidney cell line. A-498 is a classic cell line belong-
ing to the NCI-60 panel, used in renal toxicity studies and 
cancer research (Brodaczewska et al. 2016; Adam et al. 
2006). Cells were exposed to the mixture of POPs, and cyto-
toxic effects were measured using HCA.

Materials and Methods

Chemicals

Cell culture reagents were supplied by Life Technologies 
(Paisley, UK). MitoTracker ® Orange CMTMRos was pro-
vided by Thermo Scientific UK. A stock solution (1 mM) 
was prepared by adding 117 μl of anhydrous DMSO to 50 μg 
dye and stored at − 20 °C. Working stocks of 100 nM were 
prepared in assay media on the day of use. Hoechst nuclear 
stain 33,342 solution (20 mM) was also provided by Thermo 
Scientific UK. An intermediate stock of 10 mM Hoechst 
33,342 was prepared in PBS and stored at 4 °C. Working 
stock at final concentration of 1.6 μM was prepared on the 
day of staining.

Formalin solution neutral buffered (10%) was supplied by 
Sigma-Aldrich (Dorset, UK). All other reagents were stand-
ard laboratory grade.

Persistent Organic Pollutant Mixtures

Mixtures of the test POPs were designed and prepared by the 
Norwegian University of Life Sciences, Oslo (Berntsen et al. 
2017), and concentrations of relevant POPs were based on 
levels measured in human blood, according to recent studies 
of the Scandinavian population. The seven mixtures tested 
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include: a total mixture containing all the compounds, three 
submixtures (including a perfluorinated mixture (PFAA), 
a brominated mixture (Br) and a chlorinated mixture (Cl), 
and three co-mixtures (including a perfluorinated and bro-
minated mixture (PFAA + Br), a perfluorinated and chlorin-
ated mixture (PFAA + Cl), and a brominated and chlorinated 
mixture (Br and Cl). Table 1 provides a brief overview of 29 
different POPs constituting the total mixture used. A com-
plete description of selection of compounds and their indi-
vidual concentrations can be found in (Berntsen et al. 2017). 
Stocks were created in DMSO at concentrations equivalent 
to 1,000,000x human blood concentrations for the total mix-
ture, Cl mixture, and all combinations with the Cl mixture. 
The PFAA mixture, the Br mixture, and the PFAA + Br mix-
ture stocks were 10 times more concentrated, and equiva-
lent to 10,000,000x human blood concentrations. Stocks 
were stored at − 20 °C. For the exposure studies described 
below, stocks were serially diluted into medium and tested 
at final concentrations equivalent to 1/10x , 1x , 50x , 100x , 
500x relative to blood levels. Final DMSO concentration was 
0.2% and was kept constant in all dilutions tested.

Cell Culture and Treatment

The human kidney A-498 cell line (ATCC® HTB-44™) 
was obtained from the American Type Culture Collection 
(ATCC) and routinely cultured in a humidified atmosphere 
of 5%  CO2 at 37 °C. Cells were grown in 75  cm2 flasks in 
MEM media supplemented with 10% FBS, 2 mM L-glu-
tamine and 1 mM sodium pyruvate. TrypLE™ Express was 
used to disperse cells from flasks.

Cells were seeded at a density of 6 ×  104 cells/ml into 
Corning™ BioCoat™ Collagen I Multiwell Plates and 
allowed to attach for 24 h. The cells were then exposed to the 
total mixture and 6 submixtures at 5 concentrations (1/10x, 
1x, 50x, 100x, 500x blood levels) and incubated for 24 h. 
Final concentration of DMSO was kept constant at 0.2%. 
Valinomycin (12 μM) was used as a cytotoxic comparative 
compound and a solvent negative control 0.2% (v:v) DMSO 
in media was also included.

High Content Analysis

Cellomics® High Content Screening reagent series multi-
parameter cytotoxicity dyes were prepared by following 
the manufacturer’s instructions and used to measure assay 
parameters including mitochondrial membrane potential 
(MMP), mitochondrial mass (MM), cell number (CN), 
nuclear area (NA) and nuclear intensity (NI). MitoTracker ® 
Orange CMTMRos was used as a mitochondrial membrane 
potential dye evaluate parameters of mitochondrial function: 
MMP and MM. A stock solution of 1 mM was prepared fol-
lowing manufacturer’s instruction. Following 24 h exposure 

to the POP mixtures, assay media was removed and cells 
were exposed to 100 nM of MitoTracker ® Orange CMT-
MRos. The plates were protected from light and incubated 
for 30 min at 37 °C. Cells were washed with 200 μl of assay 
media and with PBS following 5 min incubation in assay 
media at 37 °C. Cells were then fixed using 2% formalin 
solution for 15 min at room temperature (RT) and washed 
with 200 μl PBS. To measure parameters reflecting nuclear 
morphology: CN, NI and NA, Hoechst 33,342 dye (at a final 
concentration of 1.6 μM) was added to each well and incu-
bated at RT for 20 min. Cells were then washed once with 
PBS; 100 μl PBS was added to each well and cells evaluated 
on CellInsight™ NXT High Content Screening (HCS) Plat-
form. Cytotoxicity of the test compounds was measured as 
% CN and compared to the solvent control (0.2% DMSO), 
set to a relative response of 100%. Valinomycin (12 µM) 
was used as a positive control for the induction of pre-lethal 
cytotoxicity in the A-498 cell line.

Data were captured at 20x objective magnification in 
the selected excitation and emission wave-lengths for Hoe-
chst 33,342 dye (Ex/Em 350/461 nm), and MitoTracker ® 
Orange CMTMRos (Ex/Em 554/ 576 nm). Twenty five field 
view images were acquired in each well to examine each 
parameter.

Statistical Analysis

Three independent exposures were performed, each in trip-
licate wells. Data were analysed using Graphpad Prism and 
Microsoft Excel, version 5.01 (San Diego, CA). Values are 
expressed as mean ± standard error of mean (SEM) of trip-
licate, independent exposures. Data are expressed in per-
centage of solvent control (0.2% DMSO) for each param-
eter. Analysis was done using one-way analysis of variance 
(ANOVA) followed by Dunnett’s multiple comparisons test. 
Mean concentrations were tested for significant difference 
at 95% confidence level. A p value of < 0.05 was considered 
statistically significant, p ≤ 0.05 (*), ≤ 0.01 (**) and ≤ 0.001 
(***).

Results

Effects on Cell Number

Valinomycin exposure concentration in the A-498 kidney 
cell line was optimised following 24 h exposure to 6 µM, 
12 µM and 15 µM. Statistically significant reductions in 
cell number (CN) of 22, 57, and 85%, respectively, were 
observed when compared to the solvent control (SC) 
at 100% (Fig. 1). Based on this 12 µM valinomycin was 
selected as an optimum concentration for the induction 
of pre-lethal toxicity and this concentration was used as a 
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positive control throughout the study. No significant changes 
in CN were observed when cells were exposed to the total 
mixture (Fig. 2a) or to the individual Cl, Br and PFAA mix-
tures (Fig. 2b). In contrast, there was a significant decrease 
in CN for the PFAA + Cl 50 × and the PFAA + Br 50x and 
500x exposure concentrations when compared with the SC 
(Fig. 2c). 

Effects on Nuclear Parameters

The Hoechst 33,342 stained nuclei were assessed by HCA 
to quantify changes in nuclear area (NA) following 24 h 
exposure to the POP mixtures. No significant changes in 
NA were observed for any of the mixtures tested except for 
the total mixture, which decreased the NA slightly at 500x, 
the highest tested human relevant concentration (Fig. 3a). 
No significant changes in NA were observed for the other 
mixtures tested.

Nuclear intensity (NI) is another cellular health marker 
used to assess the overall health of the nuclei. No statistically 
significant changes in NI were observed following exposure 
to valinomycin at 12 µM. NI was significantly increased by 
the total mixture 500x and Cl mixture at all concentrations 
tested (Fig. 3b and c, respectively). No significant changes 
in NI were observed for the other mixtures tested.

Effects on Mitochondrial Parameters

Mitochondrial membrane potential (MMP) is measured as 
intensity of fluorescence. A significant decrease in MMP 

was observed in the cells exposed to 12 µM valinomycin 
(Fig. 4a and b) when compared to the solvent control (Fig. 4a 
and b). Changes in MMP following exposure to different 
concentrations of POPs were evaluated. MMP was signifi-
cantly increased by the total mixture 100 and 500x blood 
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levels (Fig. 4a) and PFAA mixture 1x, Br + Cl mixture 100x, 
PFAA + Cl mixture 500x (Fig. 4b). No significant changes in 
MMP were observed for the other mixtures tested.

Changes in mitochondrial mass (MM) can also be used 
to quantify pre-lethal cytotoxicity using HCA. Figure 5 
presents HCA images obtained for MM and shows that in 
comparison with the solvent control (Fig. 5a), a significant 
increase in MM was observed in the cells exposed to 12 µM 
valinomycin (Fig. 5b). No significant change in the MM was 
induced by the total mixture at 1x blood levels, whereas it 
was significantly decreased after exposure to a concentra-
tion of 500x blood levels (Fig. 5d). No significant changes 
in MM were observed in all the other mixtures tested. Fig-
ure 6 graphically presents the full concentration range of 
total mixture exposure results for MM. 

Discussion

The effect of POP mixtures at human relevant exposure con-
centrations on A-498 human kidney cells was evaluated. In 
the first instance, we evaluated cytotoxic effects by quantify-
ing cell number (CN) via Hoechst-stained nuclei in a high 
content analysis (HCA) approach. Neither the total mixture, 
nor the mixtures representing the major constituent classes 
(Cl, Br, PFAA) had any effect on the CN when tested sepa-
rately. However, the PFAA + Cl and PFAA + Br combina-
tions negatively affected CN. These decreases were still only 
about 50% of the magnitude observed with valinomycin.

Cell death is often accompanied by changes in nuclear 
morphology. Apoptosis is associated with nuclear shrink-
age and fragmentation, resulting in a decrease in nuclear 
area (NA) (Bortner and Cidlowski 2002). Chromatin 

condensation during the process results in more concen-
trated staining with DNA-binding fluorescent probes, giving 
rise to increased nuclear intensity (NI). Necrosis often gives 
rise to enlarged nuclei with flocculated chromatin, resulting 
in increased NA (Buchser et al. 2004). Our HCA approach 
allowed for simultaneous detection of changes in nuclear 
parameters such as NA and NI. A slight but statistically sig-
nificant decrease in NA and increase in NI were observed at 
the highest exposure concentration of the total mixture. A 
statistically significant increase in NI was observed for the 
Cl mixture at all the exposure concentrations.

Taken these observations together, exposure to the total 
mixture has no significant effect on cell viability, except at 
a concentration corresponding to 500x the concentrations 
in human blood. This low cytotoxicity when CN is taken 
in consideration is in agreement with previous observa-
tions with the same mixture. Indeed, in a U-2 OS cell line 
expressing a fluorescently tagged human androgen receptor, 
no effect on CN was noted at concentrations up to 500x after 
6 h (McComb et al. 2019). In HepG2 liver cells no effect on 
CN was seen for concentrations up to 1000x (Wilson et al. 
2016). In pGIP/neo: STC-1 enteroendocrine cells a reduc-
tion is seen with total mixture, submixtures, and their com-
binations. However, an effect on CN has been noted with the 
Cl mixture alone at concentrations starting at 1x (McComb 
et al. 2019). This indicates that the cytotoxic effects of indi-
vidual classes of compounds can be masked within the total 
mixture by combinatorial or antagonist effects. Overall, the 
effect of human relevant POP mixtures on direct cellular 
cytotoxicity as monitored by nuclear changes seems lim-
ited. Only when the perfluorinated compounds are combined 
with either the chlorinated or the brominated compounds is a 
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Fig. 3  Nuclear parameter changes assessed in the A-498 cell line 
by HCA following 24-h exposure to POP mixtures. a) Nuclear Area 
(NA) changes following exposure to total mixture, b) Nuclear Inten-
sity (NI) changes following exposure to the total mixture and c) 

Nuclear Intensity (NI) changes following exposure to the Cl mix-
ture. DMSO (0.2%) was used as solvent control (SC) and valinomy-
cin (12 µM) (V) was used as cytotoxic comparative compound. n = 3; 
* = p ≤ 0.05, ** = p ≤ 0.01, *** = p ≤ 0.001
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reduction in cell number seen. This effect was not observed 
for the total POP mixture.

Mitochondrial parameters such as mitochondrial mem-
brane potential (MMP) and mitochondrial mass (MM) are 
also important indicators of cellular health. For example, 
apoptosis is an ATP-dependent form of cell death and can 
be initiated under cellular stress. The process involves the 
loss of MMP and the release of cytochrome C from mito-
chondria through opening of mitochondrial permeability 
transition pores (AL-Jailawi et al. 2015). This mitochon-
drial dysfunction results in a decrease in MMP and is 

expected to correspond with an increase in MM (Gottlieb 
et al. 2003; Minamikawa et al. 1999). An increase in MM 
and decrease in MMP were observed for cells treated with 
valinomycin (12 µM) in the present study. This is suggestive 
of cells entering apoptotic cell death. Mitochondrial swell-
ing upon exposure to valinomycin and uncoupled respira-
tion rates is also observed in corn mitochondria (Hensley 
and Hanson 1975). Such decreases in MMP and increases 
in MM have been reported previously in the HepG2 human 
hepatocarcinoma cell line exposed to POP mixtures iden-
tical to those used in the current study. MMP decreased 

Fig. 4  Mitochondrial Mem-
brane Potential (MMP) assessed 
in the A-498 cell line by HCA 
following 24 h exposure to 
a total mixture and b the 
PFAA, Br + Cl, and PFAA + Cl 
mixtures. DMSO (0.2%) was 
used as solvent control (SC) 
and valinomycin (12 µM) was 
used as cytotoxic comparative 
compound. n = 3; * = p ≤ 0.05, 
** = p ≤ 0.01, *** = p ≤ 0.001
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significantly after 2 and 48 h exposure to the PFAA mixture 
at 5000 and 10,000 blood levels. Short-term exposure (2 h) 
to the PFAA + Br mixture at the highest concentration was 
found to decrease MMP (Wilson et al. 2016). In contrast, in 
the present study the exposure of the A-498 kidney cells to 
the total mixture resulted in an opposite effect with increased 
MMP, accompanied with decrease in MM. In addition, some 
of the POP mixture combinations (Br + Cl and PFAA + Cl) 
had a similar effect which is opposite to the effect of valino-
mycin. It should be stressed that this occurred at much lower 
concentrations than those reported for the HepG2 system, 

and closer to realistic human exposure levels. A significant 
increase in MMP and decrease in MM following exposure 
to total POP mixture could be indicative of an altered mito-
chondrial metabolism. Increased mitochondrial activity was 
also observed in human neural stem cells exposed to total 
mixture (Davidsen et al. 2021).

Taken together this is indicative of a different cytotox-
icity mechanism for POPs compared to valinomycin. The 
opposite mitochondrial changes seen using the total mix-
ture and combinations in HepG2 and A-498 could be due 
to the different cellular response amongst the two different 

Fig. 5  Example HCA images of the A-498 cells representing changes 
in mitochondrial membrane potential (MMP) and mitochondrial mass 
(MM) following 24 h exposure to a solvent control (0.2% DMSO), 
b 12 µM valinomycin (PC), c total mixture 1x and d total mixture 
500x. Typical HCA images are shown with nuclei (stained by Hoe-
chst 33,342, shown in blue) and mitochondrial structure (stained 

by MitoTracker Orange CMTMRos, shown in orange). White block 
arrows point to examples of cells with intense globular orange 
staining, representing healthy mitochondria. Open block arrows 
show a more diffuse staining over a wider area, indicating loss of 
MMP together with an increase of MM. Images were taken with a 
20 × objective magnification, scale bars = 200 μM
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cell systems. Alternatively, the A-498 cells might be more 
resistant to damage induced by the total mixture. For exam-
ple, the mitochondrial localized apoptosis-inducing factor 
(AIF) is often down regulated in renal carcinoma cells (Xu 
et al. 2014); however, no information is available of AIF 
levels and activity in A-498 cells. It could also be indicative 
of POP mixtures acting as oxidative phosphorylation uncou-
pling agents in the A-498 kidney cell line. Certain chemi-
cals also known as oxidative phosphorylation uncoupling 
agents can increase the MMP and limit the ROS production 
by mitochondrial complex 1 (Liu 1997). Cells can some-
times undergo partial mitochondrial uncoupling, leading to 
decreased ROS production while maintaining sufficient ATP 
synthesis for delaying cellular senescence (Papa and Sku-
lachev 1997; Brand 2000).

Conclusions

Exposure to chemical mixtures can effect subtle markers of 
cellular health in a kidney cell in vitro model. This study 
highlights the complexity of evaluating the toxic effects of 
complex chemical mixtures. Surprisingly, the total mixture 
did not affect cell number and neither did individual chemi-
cal classes. However, specific combinations of the PFAA 

with the Cl or Br sub-classes decreased cell number. This 
demonstrates that interactions of chemical sub-classes may 
be masked within the total mixture. Thus, understanding 
how negative effects are elicited by classes of chemical pol-
lutants and their interactions within complex mixtures is 
crucial for future risk assessment.
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