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Abstract 

Background: Genome-wide association studies (GWAS) have proven successful in predicting genetic risk of disease 
using single-locus models; however, identifying single nucleotide polymorphism (SNP) interactions at the genome-
wide scale is limited due to computational and statistical challenges. We addressed the computational burden 
encountered when detecting SNP interactions for survival analysis, such as age of disease-onset. To confront this 
problem, we developed a novel algorithm, called the Efficient Survival Multifactor Dimensionality Reduction (ES-MDR) 
method, which used Martingale Residuals as the outcome parameter to estimate survival outcomes, and imple-
mented the Quantitative Multifactor Dimensionality Reduction method to identify significant interactions associated 
with age of disease-onset.

Methods: To demonstrate efficacy, we evaluated this method on two simulation data sets to estimate the type I 
error rate and power. Simulations showed that ES-MDR identified interactions using less computational workload 
and allowed for adjustment of covariates. We applied ES-MDR on the OncoArray-TRICL Consortium data with 14,935 
cases and 12,787 controls for lung cancer (SNPs = 108,254) to search over all two-way interactions to identify genetic 
interactions associated with lung cancer age-of-onset. We tested the best model in an independent data set from the 
OncoArray-TRICL data.

Results: Our experiment on the OncoArray-TRICL data identified many one-way and two-way models with a single-
base deletion in the noncoding region of BRCA1 (HR 1.24, P = 3.15 × 10–15), as the top marker to predict age of lung 
cancer onset.

Conclusions: From the results of our extensive simulations and analysis of a large GWAS study, we demonstrated 
that our method is an efficient algorithm that identified genetic interactions to include in our models to predict 
survival outcomes.
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Background
A fundamental aim of studying human genetics is to pre-
dict disease risk from genomic data. Genome-wide asso-
ciation studies (GWAS) that used single-locus models by 
testing each single nucleotide polymorphism (SNP) for 
association with a phenotype, proved to be instrumen-
tal in identifying thousands of genetic variants associ-
ated with human traits and disorders [1–4]. However, 
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most of the findings explained only a small proportion 
of the genetic effects on diseases and traits [1, 5]. The 
complex biological mechanisms and genetic architec-
tures of diseases motivated researchers to not only study 
main additive effects of single genetic variations, but also 
interactions between multiple variants with non-additive 
effects to explain more of the heritability of complex dis-
eases [6–10]. As the availability of large genome-wide 
genotype and next generation sequencing data continues 
to grow, detecting genetic interactions (i.e., SNP interac-
tions) will become more feasible with increasing power 
to detect significant associations [11]. At the same time, 
epistasis detection faces computational and statistical 
challenges in analyzing high-dimensional data and in 
testing millions of interaction models from an exhaustive 
search in GWAS [6, 12]. The number of tests increases 
exponentially when analyzing higher orders of interac-
tions, which require immense computing resources and 
processing time. Additionally, if the genotypic combina-
tions that confer risk are nonadditive, finding the com-
binations of genotypes that increase risk can become a 
complex combinatorial challenge [7].

With the arrival of multi-dimensional and compli-
cated genetic data sets, researchers have adapted to this 
growth by integrating machine learning methods to ana-
lyze complex genetic architectures. In genetic epidemiol-
ogy, a popular series of methods were centered around 
a machine learning approach adapted to detect gene–
gene interactions called the Multifactor Dimensionality 
Reduction (MDR) method. First introduced by Ritchie 
et  al. (2001), MDR aimed at reducing high-dimensional 
genetic interacting loci to a one-dimensional binary 
variable that could be easily classified into high and low 
risk groups [7]. While MDR have successfully facilitated 
detection and characterization of multiple genetic loci, 
there were disadvantages to this algorithm that limited 
its use on diverse data structures such as survival data, 
which is often a primary outcome of interest in cancer 
research. Gui et al. [13, 14] have expanded on the MDR 
algorithm to different phenotypes, survival and continu-
ous outcomes data. Survival MDR (Surv-MDR) extended 
the analysis of dichotomous traits in MDR to censored 
and time-to-event survival data using a log-rank test to 
classify sets of multi-loci combinations. This algorithm 
demonstrated proficiency in identifying genetic interac-
tions associated with censored time-to-death or time-
to-event data; however, it was more computationally 
demanding than MDR and it did not allow for covariate 
adjustments important for controlling confounding fac-
tors [13]. Quantitative MDR (QMDR) offered a computa-
tionally efficient algorithm to identify genetic interactions 
associated with a quantitative outcome, but it also did 
not allow for covariate adjustments such as age, gender, 

environmental toxins, and other confounding factors to 
accurately identify genetic association relations [14].

Currently, there are limited methods capable of iden-
tifying genome-wide genetic interactions efficiently 
with adjustment for covariates when studying age of 
disease-onset, such as a patient’s age at first diagnosis 
or recurrence of disease, for large-scale studies due to 
computational demands. It is important to have reliable 
estimates on the age of first diagnosis to understand the 
etiology of the disease and to tailor clinical practices, 
especially when determining the appropriate starting 
age for diagnostic screening, such as lung cancer screen-
ing [15]. In this study, we demonstrated how the Efficient 
Survival Multifactor Dimensionality Reduction (ES-
MDR) method improved on the efficiency of Surv-MDR 
and allowed for adjustment of covariate effects to ana-
lyze large-scale survival and genetic data to analyze age 
of disease-onset in association with SNP interactions. 
Our method used Martingale Residuals as the estimated 
survival outcome with adjustment for confounding fac-
tors that provided an efficient and effective identification 
of genetic interactions associated with survival out-
comes. We demonstrated the strength of the proposed 
method by designing two simulations to evaluate the 
5% type I error threshold through an evaluation of the 
empirical null distribution and to analyze the predictive 
power of ES-MDR. To analyze the effectiveness of the 
ES-MDR method, we evaluated our approach using the 
genome-wide genotyped lung cancer OncoArray-TRICL 
(Transdisciplinary Research Into Cancer of the Lung) 
Consortium data to detect and characterize SNP interac-
tions that were associated with lung cancer age-of-onset.

Methods
In this section, we discuss how we improved the compu-
tational efficiency without reducing accuracy to develop 
the ES-MDR method when analyzing SNP interactions 
(i.e., joint effects of two SNPs) in association with age of 
disease-onset.

Incorporating martingale residuals for age‑of‑onset 
survival analysis
ES-MDR improved the efficiency of Surv-MDR and 
applied the QMDR algorithm to analyze age of dis-
ease-onset in association with genetic interactions. 
Our novel ES-MDR approach used a combination of 
survival analysis and QMDR for continuous outcome 
analysis in two steps. In the first step, we started replac-
ing event time and status with Martingale Residuals 
with covariate adjustment as a new continuous score. 
In the second step, we applied QMDR to efficiently cat-
egorize the genotype combinations into high-risk and 
low-risk groups. The best model was determined in the 
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same way as QMDR, by using the cross-validated t-test 
statistic computed from a continuous variable attribute 
(e.g., Martingale Residuals) to determine the best inter-
action and overall model.

The novel algorithm for ES-MDR was performed as 
follows:

1 Selected K SNPs from all the SNPs in the data set and 
created a contingency table among every genotype 
combination of K SNPs.

2 For each multi-locus genotype combination cell, 
summed the Martingale Residuals between samples 
with and without each genotype combination.

3 Labeled cells “high-risk” if the sum of the Martingale 
Residuals was positive; otherwise negative Martin-
gale Residuals were labeled “low-risk”.

4 Pooled all the high-risk labeled cells into one group 
and all the low-risk labeled cells into another group 
to create a new one-dimensional variable.

Using Martingale Residuals to determine high or low 
risk group for survival data analysis was comparable to 
using the log-rank test statistic in Surv-MDR, however, 
more efficiently when classifying genotype combina-
tions. It can be shown that the sum of the Martingale 
Residuals is a good surrogate variable of the log-rank 
test statistics for the purpose of determining high/low 
risk groups for each genotype combination. Next, we 
compared the similarities of the equations for Mar-
tingale Residuals and the log-rank test statistic. The 
sign and magnitude of the Martingale Residuals were 
dependent on the association of SNPs and the hazard 
function in the following equation:

In this equation, δi(t) denotes the number of observed 
events that occur at each survival time t. The number of 
expected events was calculated using the cox-propor-
tional hazards model with x as the genetic factor and y 
as the adjusted covariate. The log-rank test statistic was 
defined as the following:

Here, we show that Martingale Residuals is equivalent 
to the numerator of the log-rank test statistic. There-
fore, the sum of the Martingale Residuals is equal to 
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the log-rank test statistic when the variance is set to 1. 
This infers that using Martingale Residuals as a substi-
tute for the log-rank test statistic in evaluating genomic 
combinations associated with survival outcomes could 
provide the same data reduction and categorization 
process as Surv-MDR.

Evaluation through simulations
Our purpose of running a simulation study was to evalu-
ate how well ES-MDR performed and how well it per-
formed compared with Surv-MDR. To demonstrate the 
strength of the proposed method, two simulations were 
designed to evaluate the testing score’s null distribution 
to evaluate the type I error rate and to analyze power.

Simulation I
The first simulation study was created to estimate the 
5% type I error threshold by evaluating an empirical null 
distribution with independent non-interacting SNPs and 
quantitative outcome values. Here, we created sets of 
SNPs (m = 10, 20, 50) with additive coding and sample 
sizes (n = {200, 400, 800, 1600}) in the simulation data. 
For every combination of m and n, we simulated m SNPs 
with minor allele frequencies (MAF) drawn from the uni-
form distribution over the interval U (0.1, 0.5). Then we 
simulated n continuous outcomes from a standard nor-
mal distribution. The SNP and continuous outcome data 
were created independently to ensure that there were 
no associations between SNPs and the outcome. These 
steps were repeated to create 1000 null data sets for 24 
different groups varied by the number of SNPs, sample 
size, and MAF. As a result, a total of 24,000 data sets 
were generated. Simulations were conducted in R 3.0.0 
(Vienna, Austria). To determine whether the type I error 
rate was close to 5%, we analyzed the percentage of times 
that ES-MDR randomly identified two interacting SNPs 
from a null data set.

Simulation II
The second simulation study was created to evaluate the 
power of ES-MDR with a data set that included quantita-
tive outcome variables and a pair of functional interact-
ing SNPs and 18 non-interacting SNPs. Surv-MDR was 
performed to evaluate whether ES-MDR was as effective 
as Surv-MDR in identifying functional SNPs.

The simulation data sets included different penetrance 
functions that described the probabilistic relationship 
between the quantitative outcome variable and functional 
SNPs generated with additive coding. We considered two 
different MAFs (0.2 and 0.4) and seven different broad-
sense heritability statistics (0.01, 0.02, 0.05, 0.1, 0.2, 0.3, 
and 0.4) to create a total of 14 unique model combina-
tions, where the two functional SNPs associated with the 
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outcome were evenly distributed across the seven herit-
ability statistics. To create a purely epistatic model, each 
of the 14 unique models had one or the other functional 
SNP (MAF 0.2 or 0.4) with no main effects. The 14 allele-
heritability frequency combinations were replicated five 
times to generate 70 models with varying sample sizes 
that included size (n) = {400, 800, 1600}.

Assuming SNP1 and SNP2 were the two functional 
SNPs. Let fij be an element from the ith row and jth col-
umn of a penetrance function. We generated the binary 
variable from a Bernoulli distribution with the following:

We randomly selected 200 high-risk subjects and 200 
low-risk subjects from each of the 70 probabilistic mod-
els to create one simulated data set. We repeated this 
simulation 100 times to obtain at total of 7,000 data sets.
To generate the survival time, we used the Cox-propor-
tional hazards (Cox ph) model:

In this equation,  h0(t) is the baseline hazard function 
with a Weibull distribution using the shape parameter of 
5 and the scale parameter of 2. The x is the genetic fac-
tor fixed at value 1 for high risk patients and 0 for low 
risk patients. ß represents the effect size or the log haz-
ard ratio for a one-unit increase in x (all other covariates 
held constant). The censoring fractions were sampled 
from the uniform distribution over the interval U (0,4) 
from the Bernoulli distribution, resulting in 40% censor-
ing. Finally, we merged survival time and censoring status 
with the SNP data.

We used Martingale Residuals in our novel ES-MDR 
method to classify each multi-locus genotype combina-
tion into high-risk and low-risk groups. The Martingale 
Residual is the stochastic component and in residual 
form gives the following:

In this example, δ(t) denotes the number of expected 
events that occurred at each survival time t. Assuming a 
null model with no target effects (ß = 0), this residual is 
the difference between the observed events and expected 
number of events. The sign and magnitude of the Martin-
gale Residuals are dependent on the association of SNPs 
and the hazard rate function. Each individual genotype 
with a positive Martingale Residual (i.e., greater than or 
equal to 0) was classified as high-risk. Otherwise, a nega-
tive Martingale Residual was classified as low-risk. For 
every multi-locus genotype combination of SNPs, we 
computed the sum of the Martingale Residuals to obtain 

P
(

high risk|SNP1 = i, SNP2 = j
)

= fij

h(t|x) = h0(t) exp (βx)

M(t|x) = δ(t)− h0(t) exp (βx)

a new variable that could be used to classify into the 
high-risk or low-risk group.

To estimate the power of the proposed method, we ran 
ES-MDR on each of the 7000 data sets and searched for 
the best model over all possible one- (i.e., single-locus), 
two- (i.e., two interacting loci), and three-way (i.e., three 
interacting loci) interaction models, using the T-sta-
tistic testing score. We also used the 95th percentile of 
the testing score from the null models as a threshold to 
guard against any non-significant findings. The power 
was estimated as the percentage of time ES-MDR cor-
rectly included the two functional interacting SNPs in 
the best model out of each set of 7000 data sets. This 
significant threshold for the results was at the 0.05 level. 
For comparison, we ran Surv-MDR on the simulated data 
to define its power. Training and testing scores for ES-
MDR were analyzed using two-fold cross-validation. The 
rational for using two-fold cross-validation [16] was that 
there would be no overlap between training sets and that 
all the predicted values were independent of each other. 
The best model was selected with the smallest prediction 
error and largest consistency in including the two func-
tional interacting SNPs.

OncoArray‑TRICL genotyping and quality control
A total of 533,631 SNPs from 57,775 individuals in 
the OncoArray-TRICL Consortium population-based 
study, selected from 29 studies across North America 
and Europe, as well as Asia, were genotyped using the 
Illumina OncoArray-500K BeadChip Platform, which 
included the genome-wide backbone and select loci 
known to be associated with cancer phenotypes. To 
facilitate efficient genotyping and minimize variability 
that might arise from genotyping at multiple sites, geno-
typing was conducted at the following five institutions: 
the Center for Inherited Disease Research, the Beijing 
Genome Institute, the Helmholtz Zentrum München, 
Copenhagen University Hospital, and the University of 
Cambridge. Quality control steps described previously 
were followed for this OncoArray-TRICL data set [17]. 
The following participants were excluded from the cur-
rent study: participants who lacked lung cancer status 
(did not participate in the lung cancer studies), smoking 
status, and age and gender information at diagnosis, par-
ticipants who were close relatives (second degree rela-
tives or closer), duplicate individuals, with non-European 
ancestry, with low-quality extracted DNA, with low call-
rate for genotype data, and participants who did not pass 
other quality control measures. As a result, a total of 
14,935 lung cancer cases and 12,787 controls remained in 
the current study. We restricted SNP filtering to a mini-
mum to include more SNPs for analysis. We included 
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SNPs with MAF ≥ 0.01 and SNPs with 50% and above 
genotyping rate.

OncoArray‑TRICL data analysis
We applied ES-MDR to the OncoArray-TRICL Consor-
tium population-based study to identify genetic interac-
tions in association with lung cancer age-of-onset. The 
OncoArray-TRICL Consortium is a collaboration among 
world leaders to investigate common causes of cancer 
susceptibility and progression [17]. Lung cancer cases 
and controls were genotyped using the OncoArray geno-
typing array known to tag cancer traits and susceptibility 
loci in addition to the GWAS backbone; this array con-
sisted of approximately 533,000 tagged SNPs. We iden-
tified 27,722 participants (14,935 lung cancer cases and 
12,787 healthy controls) aged 15–96  years of European 
ancestry. All participants provided informed consent and 
each study site obtained approval from their ethics com-
mittee. In this analysis, lung cancer age-of-onset, cases 
(event at diagnosis age), controls (censored at interview 
age), and a covariate (smoking status) constituted the 
survival outcome data that were substituted by Martin-
gale Residuals. We randomly sampled 2/3 of the data 
into a training set and 1/3 as the testing set. We applied 
our novel ES-MDR method to perform an exhaustive 
one-way and two-way model search. We used PLINK 
as a pre-filtering step to identify uncorrelated and inde-
pendent SNPs. SNPs that were in linkage disequilibrium 
were removed, using a stringent correlation threshold of 
0.1. After this filtering step, 108,254 SNPs remained. We 
searched over all one-way and two-way interactions in 
the training set to identify models consistently selected 
with the largest training score determined by two-fold 
cross-validation and we analysed the prediction error of 
the chosen top 10 models in the testing set. In our real 
data analysis, we also considered joint detection of the 
two SNPs with main effects to be successful detection 
of the functional interaction model. We performed a 
10,000-fold permutation test to evaluate the significance 
of chosen models.

To build a predictive model that combined the strength 
of both one-way and two-way models, we took all the 
SNPs involved in the top 1000 one-way models and all 
the SNPs from the top 1000 two-way interactions models 
and applied a penalized Cox regression method to filter 
and select the best predictive models to evaluate genetic 
factors associated with age of lung cancer onset. We 
ranked the test scores from highest to lowest and picked 
the top SNPs that best predicted lung cancer onset.

To construct predictive models linking SNPs to cen-
sored survival data, we used the least absolute shrinkage 
and selection operator (Lasso) penalized estimation for 
the Cox regression model to select top SNPs that were 

relevant to patients’ ages of lung cancer onset to create 
a prediction model with a parsimonious set of SNPs that 
could provide good prediction accuracy [18]. The Lasso 
procedure is a popular method for variable selection 
when the number of samples is significantly less than the 
number of predictor variables in the prediction model 
[19]. Briefly, Lasso is similar to the forward stepwise 
method in that it provides coefficient shrinkage as well as 
variable selection by driving nonsignificant coefficients 
in a regression model to zero [19]. Therefore, Lasso is a 
valuable tool to filter SNPs that are not associated with 
the outcome or highly correlated with other SNPs, espe-
cially in  situations when the sample size is smaller than 
the number of SNP predictors.

Survival plots were generated using the Kaplan–Meier 
(KM)  method to visualize the differences in age of lung 
cancer onset between high-risk and low-risk groups 
based on top identified SNPs associated with lung can-
cer risk. To adjust for additional factors related to patient 
survival, the Cox ph regression model included adjust-
ment for smoking status as a covariate in the model.

To assess the performance of our model in predicting 
lung cancer onset at different age intervals, we applied 
time-dependent receiver operating characteristic (ROC) 
curve and area under the curve (AUC) to evaluate the 
predictive performance of the best models, previously 
introduced by Heagerty et  al. [20]. In our study, with a 
given score function f(X), the time-dependent sensitivity 
and specificity functions were defined as follows:

We defined the corresponding ROC(t|f(X)) curve 
for any time t as the plot of sensitivity(c, t|f(X)) versus 
1—specificity(c, t|f(X)) with the cut-off point c varying. 
The AUC is the area under the ROC(t|f(X)) curve, which 
was denoted as AUC(t|f(X)) [18]. Here, the δ(t) is the 
event indicator at time t. In this study, a larger AUC at 
time t based on the score function f(X) indicated better 
predictability of time-to-event at time t as measured by 
sensitivity and specificity evaluated at time t.

Results
Assessing type 1 error in simulation I
In the first simulation, we determined whether the type 
I error rate was close to the expected value when there 
were no SNP interaction effects. Assuming a data set that 
included 20 non-interacting SNPs and a total sample size 
of 400, we expected the type I error rate to be 0.05.

In Fig.  1, the null distributions for the one- and two-
way models followed the normal distribution quite 
closely, whereas the three-way model displayed a slight 

sensitivity
(

c, t|f (X)
)

= Pr
{

f (X) > c|δ(t) = 1
}

,

specificity
(

c, t|f (X)
)

= Pr
{

f (X) ≤ c|δ(t) = 0
}

,
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right skew. Nevertheless, the upper right tail regions 
almost perfectly overlapped with the upper right tail of 
the normal distribution for all three interaction mod-
els. This showed that the use of the 95th quantile of the 
empirical distribution as a threshold to remove false pos-
itives was suitable. This would greatly reduce the com-
puting time by comparing testing scores with the prior 
calculated empirical distribution [14]. In Table 1, we used 

the 95th quantile of data sets with 400 samples to esti-
mate the type 1 error rate. The estimated rate for type 
I error was tightly distributed around 5% with a range 
from 4.5 to 5.6% for the one-way and two-way models. 
The estimated error rate for the three-way model was 
greater with a range from 7.5 to 9.7%; however, it also 
exhibited a trend towards 5% with increasing sample size. 
Based on the results in Table 1, simulation I revealed that 
with every two-fold increase in the sample size, there 
was an average 0.6% decrease in error rate for the three-
way model. As a result, we expected that the type I error 
rate would converge to 5% with sample sizes greater than 
approximately 12,800.

Assessing power and speed in simulation II
In the second simulation, we estimated the power of 
ES-MDR with a data set that included quantitative out-
come variables and a pair of functional interacting SNPs 
and 18 non-interacting SNPs. We determined whether 

Fig. 1 Empirical Distribution of the two-fold cross-validated testing scores. Each graph for sample sizes 200, 400, 800 and 1600 displays four curves 
that represent the testing score distributions for a one-, two-, and three-way model and the standard normal distribution

Table 1 Estimated type I error rate in  simulation i using 
the 95th quantile of the standard normal distribution

a m, number of SNPs; n, sample size

ma = 20 na = 200 
(%)

na = 400 
(%)

na = 800 
(%)

na = 1600 
(%)

na = 3200 
(%)

1-way 4.5 4.7 4.9 4.8 5.0

2-way 5.3 5.6 5.2 5.4 5.4

3-way 9.7 8.7 8.1 7.5 7.8
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the power of ES-MDR was comparable to Surv-MDR 
in identifying the two functional SNPs. We counted the 
number of times that the functional SNP pair was cor-
rectly identified and divided that number by the total 
number of data sets (500 for this simulation) to get the 
estimated success rate.

Figure  2 presents a comparison of the power to iden-
tify only the two (i.e., stringent model) interacting SNPs 
(SNP1 and SNP2) for ES-MDR and Surv-MDR on simu-
lated data. Table 2 displays the percent change in power 

to detect only the two functional interacting SNPs 
between ES-MDR and Surv-MDR. Overall, ES-MDR 
performed better than Surv-MDR for larger sample sizes. 
In addition, both ES-MDR and Surv-MDR demonstrated 
increasing power to detect functional SNPs with increas-
ing heritability frequencies.

Figure  3 displays a comparison in power to identify 
the two interacting SNPs (SNP1 and SNP2) plus an addi-
tional SNP (i.e., flexible model) between ES-MDR and 
Surv-MDR. Table 3 shows the percent change in power 

Fig. 2 Simulation II Power Comparison between ES-MDR and Surv-MDR – Stringent Model. The stringent model included two interacting SNPs (i.e., 
SNP1 and SNP2) and used n—sample sizes (e.g., 400, 800, 1600), maf—minor allele frequencies (e.g., 0.2, 0.4) and heritability statistics (e.g., 0.01, 0.02, 
0.05, 0.1, 0.2, 0.3, 0.4)

Table 2 Percent change in power between ES-MDR and Surv-MDR

a n, sample size; maf, minor allele frequency;
b % change calculator = ((ES-MDR − Surv-MDR)/Surv-MDR) × 100%

Heritability 0.01 (%) 0.02 (%) 0.05 (%) 0.10 (%) 0.20 (%) 0.30 (%) 0.40 (%)

na = 400

mafa

0.2 0.0 − 16.7 − 30.0 9.1 13.6 − 2.5 − 0.3

0.4 − 66.7 0.0 − 15.8 7.7 0.0 − 0.4 5.2

na = 800

mafa

0.2 100.0 16.7 15.8 16.4 − 4.0 − 6.0 − 3.9

0.4 38.5 4.8 9.7 3.8 1.0 1.1 − 0.1

na = 1600

mafa

0.2 433.3 1.1 6.3 28.2 7.5 3.3 − 5.0

0.4 24.3 15.7 5.0 8.0 − 1.7 − 0.5 0.6
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to detect the two interacting SNPs plus an additional 
SNP. Here, we also demonstrated that ES-MDR had 
greater power compared to Surv-MDR. Again, ES-MDR 
performed better than Surv-MDR with larger sample 
sizes.

We compared the computing time between ES-MDR 
and Surv-MDR for 100 simulated data sets, for one-, 
two-, and three-way interactions, and with ten-fold 
cross-validation. The computing time for Surv-MDR was 
734.5  min versus 2.25  min for ES-MDR, both of which 

were run on 1 node in the high-performance comput-
ing cluster called Discovery with AMD 3.1 Ghz CPU 
and 64  GB of memory. Discovery uses a Linux RedHat 
6.7 operating system and is comprised of 160 computing 
nodes (3000 + cores), 12.5 TB of memory, and is available 
to the Dartmouth research community.

Application to OncoArray‑TRICL data set
The main goal was to identify SNPs with main effects 
and SNP interactions that were associated with lung 

Fig. 3 Simulation II Power Comparison between ES-MDR and Surv-MDR—Flexible Model. The flexible model included two interacting SNPs (i.e., 
SNP1 and SNP2) plus a third SNP3 and used n—sample sizes (e.g., 400, 800, 1600), maf—minor allele frequencies (e.g., 0.2, 0.4) and heritability 
statistics (e.g., 0.01, 0.02, 0.05, 0.1, 0.2, 0.3, 0.4)

Table 3 Percent change in power between ES-MDR and Surv-MDR

a n, sample size; maf, minor allele frequency;
b % change calculator = (ES-MDR − Surv-MDR)/Surv-MDR × 100%

Heritability 0.01 (%) 0.02 (%) 0.05 (%) 0.10 (%) 0.20 (%) 0.30 (%) 0.40 (%)

na = 400

mafa

0.2 25.0 10.0 − 34.7 − 1.2 20.6 7.0 4.2

0.4 − 80.0 − 10.5 − 4.6 11.3 9.0 1.4 4.6

na = 800

mafa

0.2 16.7 17.6 25.3 21.4 7.5 − 0.7 1.0

0.4 16.7 − 16.7 − 10.7 7.1 11.4 7.5 1.4

na = 1600

mafa

0.2 152.6 19.4 17.9 16.6 6.6 0.3 0.0

0.4 26.7 17.2 2.6 6.6 3.4 0.6 0.0
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cancer susceptibility at different ages of disease onset. 
Using a population-based study, we applied ES-MDR 
on the OncoArray-TRICL Consortium data with 14,935 
cases and 12,787 controls for lung cancer to search over 
all one-way and two-way interactions to identify genetic 
interactions in relation to lung cancer age-of-onset. 
For this study, we included 533,631 genotyped variants 
and removed SNPs in linkage disequilibrium (LD) > 0.1 
(n = 108,254 SNPs).

Table 4 lists the top 10 one-way test results generated 
by ES-MDR and cross-validation. Using ES-MDR, highly 
significant SNPs were identified in association with lung 
cancer age-of-onset. Table 5 displays the top 10 two-way 
interactions identified by ES-MDR that were associated 
with lung cancer age-of-onset. Due to the observed infla-
tion of the type 1 error rate for 3-way interactions in the 
simulation study, a 3-way interaction was not evaluated 
in the OncoArray-TRICL data analysis. For Table  6, we 
combined SNPs from the top 1000 one-way loci and the 
top 1000 two-way interactions, ranked the SNP scores 
from highest to lowest, and applied the Lasso Cox regres-
sion method to filter and select the best genetic factors 
that predicted age of lung cancer onset. Table  6 exhib-
its the top 10 significant SNPs selected by Lasso Cox 
regression. To visualize the difference in age of lung 
cancer onset between the high risk and low risk groups, 
Fig.  4 illustrates the contrast using the KM) survival 
curve. KM curves for top one-way SNPs in the intronic 
region of TULP1, FKBP5 (rs6906359), in-between genes 
GTF2IP1, PMS2P5 (rs149743903), and in the dele-
tion of a noncoding region of BRCA1 (rs749410065) 
(NC_000017.10:g.41196821delT per Human Genome 
Variation Society nomenclature), and for a top two-
way interacting SNPs in gene regions of BRCA1 
(rs749410065) and CBR1, LOC100133286 (rs151043730) 

displayed a clear separation of curves between the high- 
and low-risk groups. This demonstrated the efficacy of 
ES-MDR using Martingale Residuals to differentiate 
high risk and low risk groups based on genotype varia-
tion when evaluating lung cancer age-of-onset. We con-
tinued our analysis with a comparison of smoking only 
and smoking plus SNP models to determine the best 
performance in predicting lung cancer onset at different 
ages. We used a common graphical plot called the area 
under the receiver operating characteristic (ROC) curve, 
also known as AUC, to measure the performance of our 
models to discriminate the best parameters at predicting 
lung cancer onset at different ages based on accuracy. In 
Fig.  5, the x-axis corresponds to the age of lung cancer 
onset, starting from 15 to > 80 years, and the y-axis indi-
cates the AUC, ranging from 0.4 to 1. We examined the 
predictive performance of 7 different models with vari-
ous tuning parameters identified from Cox Lasso regres-
sion, such as smoking only and smoking plus 2 SNPs, 4 
SNPs, 13 SNPs, 19 SNPs, 29 SNPs, and 183 SNPs. This 
figure shows the average of the estimated AUCs over the 
OncoArray-TRICL data using the predictive scores from 
the independent left-out test data set. The plot displays 
good predictive performances of models generated using 
ES-MDR. The AUC for models with more SNPs lies 
between 0.6 and 0.7 and continues to increase at later 
ages of onset. There is a noticeable decrease in AUC for 
ages 40 and below. This could be due to the limited num-
ber of lung cancer cases identified for individuals below 
the age of 40, which indicated that the models might 
not be appropriate to predict lung cancer diagnoses at 
40 years and younger. The AUC of both smoking only and 
smoking with SNPs increased with age from age 40 and 
older. However, the AUC, depending on the number of 
SNPs in the models, differed by age. The model with the 

Table 4 Top-one-way models identified by ES-MDR in OncoArray-TRICL data

a Chr, chromosome; bp, base pair; MA, minor allele frequency; detT, NC_000017.10:g.41196821delT; NA, not available; HR, hazard ratio

Nearest Gene(s) Chra SNP (GRCh37/
hg19)

Position  (bpa) 
GRCh37/hg19

Gene Region Alleles 
(Major/
Minor)

MAFa 
(1000 
Genomes)

Log‑rank 
Test 
score

OncoArray‑
genotyped 
 (HRa)

Permutation 
P value

LINC00708, 
LOC105755953

10 rs12358150 8735744 Intergenic C/T 0.26 340.90 20.51 < 0.0001

GTF2IP1, PMS2P5 7 rs149743903 74711828 Intergenic T/C NAa 295.80 6.39 < 0.0001

PPP2R2B, STK32A 5 rs76601208 146581977 Intron C/T 0.002 180.30 22.83 < 0.0001

KLF5, LINC00392 13 rs138428539 73736950 Intergenic T/C,G 0.01 145.10 6.46 < 0.0001

TULP1, FKBP5 6 rs6906359 35528378 Intron C/T 0.10 135.90 5.76 < 0.0001

UTP23, RAD21 8 rs10105870 117807762 Intergenic G/A 0.15 113.00 27.64 < 0.0001

VPS8 3 rs112047443 184701960 Intron A/T NAa 93.30 19.57 < 0.0001

BRCA1 17 rs749410065 41196821 delTa -/T NAa 62.20 1.24 < 0.0001

ATR 3 rs529613417 142285472 Intron A/T 0.001 57.00 5.48 < 0.0001

B3GNT2, TMEM17 2 rs11526118 62647317 Intron G/A 0.16 46.00 23.01 0.0033
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largest number of SNPs plus smoking performed the best 
at AUC 0.68 between ages 40 and 80 of onset compared 
to the smoking-only model with an AUC of 0.55. There 
was a noticeable trend where incremental additions of 
SNPs in the model increased the AUC for age-of-onset 
between 40 and 80 + . On the other hand, the AUC for 
smoking-only and smoking plus fewer SNP models (e.g., 
2 and 4) displayed the opposite trend where it increased 
around 90 + years of age.

Discussion
In this study, we present a novel algorithm to identify 
genetic interactions associated with the age-of-onset for 
lung cancer. We demonstrated in two simulation studies 
that our ES-MDR method was properly controlled for at 
the 5% type I error rate under the null distribution and 
improved power to detect causal SNPs. We identified 
new loci that were biologically plausible for lung cancer 
onset using the large OncoArray-TRICL data with 27,722 
individuals. There are two unique contributions from this 
study. First, we offer a more computationally efficient 
algorithm, ES-MDR, a method that analyses survival 
data by using Martingale residuals in place of survival 
outcome data. Second, ES-MDR includes the ability to 
adjust for covariates, such as smoking status, a necessary 
step to control for confounding factors, whereas existing 
methods, used for survival analysis such as Surv-MDR, 
are unable to provide.

Using the MDR method to reduce the size of multiple 
dimensions to a single dimension to identify multi-locus 
genetic interactions in high-dimensional genomic data 
sets has been a well-established approach. Richie et  al. 
(2001) first introduced MDR, a non-parametric (i.e., no 
parameters are estimated) and genetic model-free (i.e., 
no genetic model is assumed) model, that condensed 

multiple genetic loci into a single variable in order to cat-
egorize genotypes into two groups [7]. The goal was to 
group genotypes into high-risk and low-risk categories 
associated with and without disease outcomes, respec-
tively. However, MDR was restricted by its inability to 
analyze different outcome variables other than binary 
variables and it did not allow for the adjustment of con-
founding factors that was critical in preventing false 
association analyses. Therefore, an extension of the tradi-
tional MDR method was developed to analyze censored 
survival data, called Survival MDR or Surv-MDR.

Like the original MDR algorithm, Surv-MDR is a non-
parametric and genetic model-free method proposed by 
Gui et  al. (2011), and it was developed to allow for the 
analysis of time-to-event data, such as patient survival 
time or time to disease relapse [13]. Surv-MDR used the 
log-rank test statistic to compare survival times between 
samples with and without the multi-locus risk genotype 
combination and classified them into high and low risk 
groups [13]. Surv-MDR also used cross-validation to 
identify the optimal set of K SNPs and overall best model. 
While Surv-MDR was successful in identifying SNP 
interactions associated with time-to-event outcomes, it 
was more computationally demanding than MDR and the 
inability to adjust for covariates persisted. Consequently, 
the MDR method was optimized further to develop the 
Quantitative MDR (QMDR) method to address the slow-
to-compute algorithm challenge [14].

QMDR optimized the MDR algorithm by offering a 
computationally efficient way to analyze quantitative or 
continuous trait outcomes. QMDR compared the mean 
value of each multi-locus genotype to the overall mean 
and labeled each genotype combination as “high-risk” 
or “low-risk”. Cross-validation was also implemented in 
QMDR to identify the optimal set of K SNPs and overall 

Table 6 Top SNPs selected by cox lasso regression in OncoArray-TRICL data

a Chr, chromosome; NA, not available; bp, base pair;  delTa = NC_000017.10:g.41196821delT; MAF, minor allele frequency; HR, hazard ratio

Nearest Gene(s) Chra SNP (GRCh37/
hg19)

Position  (bpa) 
(GRCh37/
hg19)

Gene region Alleles 
(Major/
Minor)

MAFa 
(1000 
Genomes)

Test score OncoArray‑
genotyped 
 (HRa)

Permutation 
P value

BRCA1 17 rs749410065 41196821 delTa –/T NAa 62.20 1.24 < 0.0001

GTF2IP1, PMS2P5 7 rs149743903 35528378 Intergenic C/G NAa 295.80 6.39 < 0.0001

LOC102467079, 
TOX3

16 rs117142114 52328666 Intergenic T/C 0.02 31.00 1.29 < 0.0001

HYKK 15 rs9788721 78802869 Intron C/T 0.31 86.30 1.41 < 0.0001

MIR3925, PANDAR 6 rs7753169 36614326 Intergenic A/C 0.36 27.90 1.15 < 0.0001

CHRNA5 15 rs16969968 78882925 missense G/A 0.15 86.80 1.41 < 0.0001

KLF5, LINC00392 13 rs138428539 73736950 Intergenic T/C,G 0.01 145.10 6.46 < 0.0001

TULP1, FKBP5 6 rs6906359 35528378 Intron C/T 0.10 135.90 5.76 < 0.0001

CHRNA5 15 rs951266 78878541 Intron G/A 0.16 88.50 1.41 < 0.0001

FAM114A1 4 rs1873195 38891173 Intron C/T 0.20 8.90 0.87 0.0119



Page 12 of 15Luyapan et al. BMC Med Genomics          (2020) 13:162 

best model. For each K-way interaction, the steps used 
for a k-fold cross-validation were similar to the Surv-
MDR method except for the step to identify the best 
K-way interaction. In this case, the largest T-test statis-
tic was used instead of the square of the log-rank statis-
tic when identifying the best interaction model. Inspired 
by the computational capabilities of QMDR to analyze 
quantitative outcomes associated with genetic variations, 
we leveraged this method’s straightforward computing 
efficiency to evaluate survival outcome data for time-to-
event analysis.

Our approach transformed survival data (e.g., time and 
event status) into a single variable, Martingale Residu-
als, to use as a surrogate for time-to-disease and disease 
status, with application of QMDR for rapid processing 
of genotype combinations into high and low risk groups. 
We were able to identify thousands of significant one-way 
and two-way models using ES-MDR and cross-validation 
when applied to the lung cancer OncoArray-TRICL data 
set. We were unable to compare the results of ES-MDR 
and Surv-MDR, both because Surv-MDR would have 
taken an extensive amount of time (e.g., greater than 
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Fig. 4 Differences between High Risk (red curve) and Low Risk (blue curve) groups in relation to SNPs. Kaplan–Meier plots displays the difference 
between individuals categorized in High Risk vs. Low Risk groups by genetic variation in top one-way SNPs identified from the testing set, TULP1/
FKBP5 (rs6906359), GTF2IP1/PMS2P5 (rs149743903), and BRCA1 (rs749410065) (NC_000017.10:g.41196821delT), and in a top two-way interacting 
SNPs from the testing set, BRCA1 (rs749410065) (NC_000017.10:g.41196821delT) & CBR1, LOC100133286 (rs151043730)
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4  months) to conduct a genome-wide genetic interac-
tion analysis using the large OncoArray-TRICL data set, 
and because the current Surv-MDR algorithm would 
not allow for adjustment of confounding factors such as 
smoking status.

When searching for SNP interactions using real data, 
we chose a two-fold cross-validation instead of a ten-fold 
cross-validation to evaluate the optimal one-way and 
two-way interaction models as described previously [14]. 
From the central limit theorem, assuming a sufficiently 
large sample size (n > 50) from a population with a finite 
level of variance, the mean of all samples from the same 
population would be approximately equal to the mean of 
the population. Therefore, we expected the testing scores 
with 400 samples from our simulation study to follow a 
standard normal distribution. However, Gui et al. (2013) 
displayed a slight right skew with a standard deviation of 
1.6 in their empirical distributions that was due to extra 
variation introduced by overlapping training sets in their 
ten-fold cross-validation method [14, 21]. Furthermore, 
two-fold cross-validation had been advocated to perform 
hypothesis testing where the training folds were mutu-
ally independent with no overlap [21]. Consequently, 

we evaluated the optimal one-way and two-way interac-
tion models and the overall best model using two-fold 
cross-validation.

We explored prediction models that included SNPs 
that could be used to forecast lung cancer onset. Figure 5 
lays out the AUC estimates for each model. The AUC 
peaked around age-of-onset less than 30 and greater than 
90 years old. This may be due to the limited number of 
lung cancer cases (e.g., less than 10 cases) at younger and 
older ages. In general, based on AUC averages, age of lung 
cancer onset was strongly influenced by genetic variants, 
with increasing numbers of SNPs contributing to better 
AUC estimates. The plateauing of AUC averages for the 
40–80 years old range revealed good estimates for age of 
onset for all models, which was likely due to the larger 
sample size for evaluation. Another plausible explanation 
for the high AUC for early and late age of onset was the 
likelihood that those cases contained the same combina-
tions of risk SNPs in the models. The identified top SNPs 
with high AUC for age of onset were not only associated 
with early lung cancer cases, but they potentially could 
also contribute to late age of onset cases. The 2 SNP and 
4 SNP models had strong associations with lung cancer 

Fig. 5 Plots of Area under the curve (AUC). Each line corresponds to a model. Models were smoking only and smoking plus 2 to 183 SNPs. Here we 
compared the AUCs between the smoking only model and smoking plus SNPs models for predicting lung cancer age-of-onset ranging from 20 
to < 100 years. The number of individuals diagnosed with lung cancer at < 40 years, 40 to < 60 years, 60 to < 80 years, and 80 to < 100 years is shown 
below the figure
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cases and therefore, were responsible for high AUC aver-
ages for early and late age of onset of lung cancer. For the 
smoking only model, it played less of a role for early lung 
cancer onset because the adverse effects from smoking 
could require more time to develop. Over time the effects 
from smoking could be the main driver for late age lung 
cancer cases, which could explain why genetic factors 
do not seem to greatly effect cancer onset in later years. 
This interpretation could make biological sense since 
the effect of smoking over a longer time period could 
have compounding effects on cancer development. Con-
versely, cancer development due to genetics might appear 
at earlier rather than later years.

Limitations
While our novel ES-MDR overcame some of the limita-
tions described in previous methods used to evaluate 
genetic interactions, it was not without some of its own 
disadvantages. When analyzing survival data, the method 
did not directly evaluate survival variables such as time 
and event status. As a result, when using Martingale 
Residuals instead of specific survival outcomes data, we 
might be missing some important information that was 
needed to identify associations between SNP interac-
tions and survival outcomes. Our QQ plot analysis from 
real data indicated a strong departure from the null dis-
tribution which indicated that there might exist a sys-
tematic bias. This result could be due to a combination 
of the large sample size and continuous outcome. As a 
result, we used permutation tests to evaluate the results 
from the OncoArray-TRICL data set. Another limita-
tion came from over parameterizing our models, result-
ing in many multifactor cells with missing data [7]. This 
did not affect the classification of genotype combinations 
or identifying cross-validation consistency of the model, 
however, it could affect our estimation of the prediction 
error [7]. Future studies would need to address this limi-
tation. Next, we applied our ES-MDR method to analyze 
survival outcomes using case–control studies, where 
estimating the age-specific incidence (e.g., age-of-onset) 
was not typically designed for case–control studies. On 
the other hand, cohort studies, which are designed for 
survival analyses, are expensive and require a great deal 
of follow-up time to obtain age-of-onset information. 
This could be one of the barriers in analyzing survival 
outcomes for large cohort studies; it could require a lot 
of time and resources to amass an extensive amount of 
data. In our study, we were able to analyze and identify 
potential genetic markers that predicted lung cancer risk 
using a large lung cancer GWAS consortium data, which 
could be followed up with further investigations for bio-
logical and functional significance. Due to fewer available 
observations of lung cancer age-of-onset among younger 

individuals, we were limited in our ability to predict 
lung cancer onset for individuals 40  years and younger. 
With continuous efforts in recruiting participants in the 
OncoArray-TRICL Consortium, we might find more 
cases among the early onset population to better pre-
dict lung cancer risk in the future. Finally, there were no 
available validation data to replicate our top SNP findings 
because these SNPs were not likely genotyped in other 
GWAS data sets. Currently, there are ongoing efforts to 
collect external data that will include genotyping of our 
top SNP findings for replication.

Future studies
ES-MDR is a powerful alternative to Surv-MDR for 
identifying interactions, especially at the genome-wide 
scale. We demonstrated its ability to identify high-order 
genetic interactions in simulated and real data sets. 
Although ES-MDR addresses previous limitations of 
Surv-MDR and other MDR-like methods, there are ways 
in which this method can be improved. While ES-MDR 
had greatly improved computing efficiency, genome-wide 
scans for interactions will still require massive computing 
resources, especially to analyze higher-order interactions. 
It will be necessary to optimize the selection of SNPs in 
predictive models, for example, by selecting genes known 
to participate in biological and metabolic pathways [22]. 
This can improve the predictive ability of ES-MDR for 
two-, three, and multi-way interactions in a pathway 
analysis. Second, a future study may entail introducing 
variance back to Martingale Residuals by way of weight-
ing each residual based on the time-to-event data. This 
can greatly improve our power for model selection with-
out removing the efficiency of the algorithm.

Conclusions
In summary, the ES-MDR method provides a way to ana-
lyze high-order interactions at the genome-wide scale to 
advance studies of genetic interactions. We developed 
a new method that efficiently captures non-linear and 
high-order interactions for time-to-event analysis.In gen-
eral, ES-MDR has improved power performance relative 
to Surv-MDR using simulated data. Based on the noticea-
ble trends, we are confident that with bigger sample sizes, 
ES-MDR will continue to significantly gain in power to 
detect functional interacting SNPs without inflating the 
type I error rate. Providing new and improved methods 
to analyze epistasis or gene interactions may offer new 
opportunities to not only explain the missing heritability 
for complex disease risk, but can also potentially detect 
new genetic determinants that is important for clinical 
utility such as disease diagnosis and prognosis.
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