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Abstract In non-Markov multi-state models, the traditional Aalen-Johansen
(AJ) estimator for state transition probabilities is generally not valid. An al-
ternative, suggested by Putter and Spitioni, is to analyse a subsample of the
full data, consisting of the individuals present in a specific state at a given
landmark time-point. The AJ estimator of occupation probabilities is then
applied to the landmark subsample. Exploiting the result by Datta and Sat-
ten, that the AJ estimator is consistent for state occupation probabilities even
in non-Markov models given that censoring is independent of state occupancy
and times of transition between states, the Landmark Aalen-Johansen (LMAJ)
estimator provides consistent estimates of transition probabilities. So far, this
approach has only been studied for non-parametric estimation without co-
variates. In this paper, we show how semi-parametric regression models and
inverse probability weights can be used in combination with the LMAJ estima-
tor to perform covariate adjusted analyses. The methods are illustrated by a
simulation study and an application to population-wide registry data on work,
education and health-related absence in Norway. Results using the traditional
AJ estimator and the LMAJ estimator are compared, and show large differ-
ences in estimated transition probabilities for highly non-Markov multi-state
models.
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1 Introduction

Multi-state models, as an extension of traditional time-to-event models, have
received increasing amount of attention over the last decades. See for exam-
ple tutorials by Hougaard (1999), Andersen and Keiding (2002), Putter et al
(2007), Meira-Machado et al (2008) and Andersen and Pohar Perme (2013)
or the mstate package in R (de Wreede et al, 2011). An attractive feature
of multi-state models, is that traditional hazard-based methods from survival
analysis can be applied to estimate transition intensities. This includes the
Nelson-Aalen estimator for the cumulative hazard and any hazard regression
model, such as the Cox proportional hazards model and Aalen’s additive haz-
ards model.

In addition to transition intensities, two other quantities are often of inter-
est when making inference from multi-state models; state transition probabili-
ties and state occupation probabilities. When the specified multi-state model is
Markov, both transition probabilities and occupation probabilities can be con-
sistently estimated in a simple manner by plugging the transition intensities
into the so-called matrix product-integral formula for the empirical transition
matrix, often denoted the Aalen-Johansen estimator (Aalen et al, 2008). For
multi-state models that are not Markov, Datta and Satten (2001), in their
seminal paper, showed that state occupation probabilities still are consistently
estimated using the product-integral formula, given that censoring is indepen-
dent of states occupancy and transition times between states. However, this is
not the case for state transition probabilities.

Explicit formulas for transition probabilities when multi-state models are
not Markov are available for some types of models, for example for semi-
Markov multi-state models without loops (Andersen and Pohar Perme, 2008;
Titman, 2015). There is also currently a rich ongoing methodological develop-
ment on methods for estimating state transition probabilities in more general
semi- and non-Markov multi-state models (Allignol et al, 2014; Titman, 2015;
de Uña-Álvarez and Meira-Machado, 2015; Putter and Spitoni, 2018). While
the Aalen-Johansen estimates make use of the full data set, which is made pos-
sible by the Markov assumption, the methods from these papers are all based
on the idea of subsampling. Most recently, Putter and Spitoni (2018) suggested
the analysis of a subset of the population, based on the individuals being in a
specific state at a specific time point, which is a form of landmarking. Within
the landmark subset, they argue that the Aalen-Johansen (AJ) estimator can
be applied to obtain consistent estimates of state transition probabilities. This
holds because transition probabilities can be seen as occupation probabilities
in specific landmark subsets. Thus, due to the result of Datta and Satten,
the product-integral formula can be used to consistently estimate transition
probabilities after subsampling on a landmark. Putter and Spitioni’s estimator,
which they named the Landmark Aalen-Johansen (LMAJ) estimator, is shown
to be more efficient than alternative methods and is applicable in arbitrary
multi-state models (Putter and Spitoni, 2018).
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Note that the LMAJ estimator was introduced for a setting with unad-
justed non-parametric estimation of transition intensities and that the result
of Datta and Satten also was proven in the case without covariates. However,
there are many applications where it is desirable to include, or adjust for,
covariate information when estimating state transition probabilities, e.g. us-
ing Cox regression or additive hazards regression for modelling the transition
intensities and by inverse probability of treatment (IPT) weighting (Robins
et al, 2000). One could have a situation where the interest is in 1) the effect
of a single binary randomised treatment variable on the transition probabil-
ities, 2) adjusting for confounding variables to identify the effect of a binary
non-randomised treatment on transition probabilities, or 3) covariate-specific
prediction of transition probabilities. To our knowledge, the validity of the
Datta and Satten result, or the landmark approach by Putter and Spitioni,
has not been studied for models with covariates.

In this paper, we argue for the validity of the result in Datta and Satten
(2001) in two different settings; one using covariate adjusted transition inten-
sities based on hazard regression models and one where such intensities are
estimated after IPT weighting. As a result, we argue that the LMAJ estima-
tor of Putter and Spitioni also can be used to consistently estimate covariate
adjusted or IPT weighted state transition probabilities. We study the prop-
erties of the methods in a simulation study and illustrate them through an
application to Norwegian registry data on work, education and health-related
absence.

2 The landmark approach to estimating transition probabilities

2.1 Multi-state models

A multi-state model is a model for a stochastic process {X(t) | t ≥ 0}, taking
values in the state space S = {1, 2, 3, ..., S}. The model is defined by the
transition intensities

αjk(t,Ht−) = lim
∆t→0

Pr(X(t+ ∆t) = k | X(t−) = j,Ht−)
∆t , ∀j, k ∈ S : j 6= k

where Ht− is the history of the process up to just before time t. If we assume
that the process is Markov, then αjk(t,Ht−) = αjk(t).

Let P (s, t) be the S×S transition probability matrix with elements Pjk(s, t),
for all j and k from 1 to S, where

Pjk(s, t) = Pr(X(t) = k | X(s) = j,Hs),

for two time points s and t, where s ≤ t.
When the multi-state model is Markov, the state transition probabilities,

now Pjk(s, t) = Pr(X(t) = k | X(s) = j), are given by the formula

P (s, t) = R
(s,t]

(I + dA(u)),
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where A(t) is the matrix of cumulative transition intensities with elements
Ajk(t) =

∫ t
0 αjk(s)ds for j 6= k and Ajj(t) = −

∑
k 6=j Ajk(t). See for example

Andersen and Pohar Perme (2013) for more. Let then Â(t) be the S × S

matrix of estimated cumulative transition intensities, with elements Âjk(t),
∀j, k ∈ S. Given that Â(t) is step function, we may then estimate the transition
probabilities by the finite matrix product

P̂ (s, t) = R
(s,t]

(I + dÂ(u)) =
∏
(s,t]

(I + ∆Â(u)),

where ∆Â(t) is the increment of Â at time t. The state occupation probabilities
π(t), a row vector with elements πj(t) = Pr(X(t) = j), for all j ∈ S, can then
be calculated by

π̂(t) = π(0)P̂ (0, t) = π(0)
∏
(0,t]

(I + ∆Â(u)), (1)

where π(0) is assumed known and corresponds to the initial state distribution
at time zero.

Without covariates, the elements of A(t) can be estimated by the Nelson-
Aalen estimator. In settings with a vector of transition specific covariates
zjk, corresponding cumulative transition intensities Ajk(t | zjk) =

∫ t
0 αjk(u |

zjk)du, can be estimated using traditional hazard regression models. This in-
cludes the Cox proportional hazards model paired with the Breslow estimator
for the cumulative baseline hazard (Breslow, 1972), and the additive hazards
model (Aalen et al, 2008).

2.2 The Datta-Satten result

Datta and Satten (2001) showed that the matrix product-integral formula in
(1) produce consistent estimates of the state occupation probabilities even
when the underlying multi-state process is not Markov, given that censoring
is independent of state occupancy and times of transition between states. Note
that this censoring assumption is a stronger assumption than the common as-
sumption of independent censoring (Aalen et al, 2008, p. 123). However, when
such censoring dependencies occur, it was later showed in Datta and Satten
(2002) that valid estimates of the state occupation probabilities still could be
obtained by introducing inverse probability of censoring (IPC) weights to the
formula in (1). For more on proofs, asymptotics and inference for the results
in Datta and Satten (2001), see also Glidden (2002). Among other things,
Glidden showed that the Greenwood estimates of the standard errors for oc-
cupation probabilities in the case without covariates also are valid without the
Markov assumption. See e.g. Andersen et al (1993, p. 290 – 295), for more on
these estimators. We now argue for the validity of the Datta-Satten result in
multi-state models based on hazard regression models (Section 2.2.1) and in
inverse probability of treatment weighted multi-state models (Section 2.2.2).
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2.2.1 Validity of the Datta-Satten result in multi-state models based on
hazard regression models

Consider a situation where we want to estimate covariate specific state occu-
pation probabilities. With baseline covariates zjk, intensities αjk(t | zjk) can
be modelled by any hazard regression model from traditional event history
analysis. Let us for simplicity consider the situation where the same covariates
are used for all transitions, so that zjk = z, even though this limitation is not
necessary.

Covariate specific transition intensities in Cox proportional hazards models
from state j to state k takes the form

αjk(t | z) = αjk0(t) exp(βTjkz).

Here, βjk is a vector of regression coefficients and αjk0(t) is the baseline inten-
sity for transitions from state j to state k. The cumulative baseline transition
intensities Ajk0(t) =

∫ t
0 αjk0(u)du can be estimated using the Breslow estima-

tor
Âjk0(t) =

∑
Ti≤t

∆N̄jk(Ti)∑
l Yl(Ti) exp(β̂Tjkzl)

, j 6= k

where Ti are the ordered times when transitions occurs, ∆N̄jk(t) is the number
of transitions observed from state j to state k at time t, and Yl(t) is an at risk
indicator that takes the value 1 if individual l, with covariates zl, is observed to
be in state j just before time t. See for example Andersen et al (1993). Without
covariates, this reduces to the Nelson-Aalen estimator. With covariates, the
estimate for the cumulative transition intensity for a given covariate pattern
z is

Âjk(t|z) = Âjk0(t) · exp(β̂Tjkz), j 6= k

Alternatively, we can model transition intensities using the additive haz-
ards model for each transition j → k (Aalen et al, 2001), with

αjk(t | z) = βjk0(t) + βTjk(t)z,

where βTjk(t) are time-varying regression functions and βjk0(t) is the baseline
j → k transition intensity. The cumulative regression functions:

Bjk(t) =
[∫ t

0
βjk0(u)du,

∫ t

0
βTjk(u)du

]T
,

can easily be estimated using regular least squares techniques and the resulting
estimate B̂jk(t) corresponds to a multivariate Nelson-Aalen estimator. If z is
restricted to a binary covariate only, with element z = 0 or 1, then B̂jk0(t) is
the Nelson-Aalen estimator for the group with z = 0, and the element B̂jk1(t)
is the difference between the Nelson-Aalen estimators for the two groups. For
a given covariate pattern z, we may introduce z∗ = (1, zT )T and estimate the
corresponding cumulative transition intensity by Âjk(t|z) = B̂T

jk(t)z∗.
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In both cases, as long as the model assumptions of the selected hazard
regression model hold, the validity of the formula in (1) should be preserved,
and one can write

π̂(t|z) = π̂(0|z) R
(0,t]

(I + dÂ(u|z)), (2)

where π̂(0|z) is estimated using, e.g., multinomial regression.
Formally one can argue for the validity of the Datta-Satten result in multi-

state models based on conditional intensities, using similar arguments as for
non-conditional models. For example, inspired by the argument in Aalen et al
(2001) for discrete time, we can consider the following justification of validity
for the formula in (2) without any Markov assumption. For simplicity, we leave
out censoring from this argument.

First, we note that

1
∆t

(π(t+ ∆t|z)− π(t|z)) =
1

∆t

Pr(X(t+ ∆t) = 1|z)
...

Pr(X(t+ ∆t) = S|z)

−
Pr(X(t) = 1|z)

...
Pr(X(t) = S|z)

T

=
1

∆t



∑S

k=1 Pr(X(t+ ∆t) = 1, X(t) = k|z)
...∑S

k=1 Pr(X(t+ ∆t) = S,X(t) = k|z)

−
Pr(X(t) = 1|z)

...
Pr(X(t) = S|z)




T

= π(t|z) ·
1

∆t
(P (t, t+ ∆t|z)− I),

for some time interval (t, t+ ∆t].
Now, if dA(t|z) = lim

∆t→0+
(P (t, t+ ∆t|z)− I), we get that

d

dt
π(t|z) = π(t− |z) · dA(t|z),

which, by integrating on both sides, can be written as

π(t|z) = π(0|z) +
∫ t

0
π(s− |z)dA(s|z).

This integral equation has a unique solution after Volterra (1887) (Andersen
et al, 1993, p. 90) given by

π(t|z) = π(0|z) R
(0,t]

(I + dA(s|z)).

We recognise the above expression as the product-integral formula in (1). Note
that the last part of the above argument has similarities with the proof of the
product-integral formula for transition probabilities, revisited for example in
Andersen and Pohar Perme (2013), p. 429, but that in our case, the proof
does not involve any Markov assumption. In other words, we can identify
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π(t|z) without the Markov assumption if we have a consistent estimator for
A(t|z). Following the above argument, standard errors can now be calculated
plugging in the covariate specific covariance matrix in the formula in Andersen
et al (1993), Eq. 4.4.17.

Note that we have not considered time-varying covariates, where z is re-
placed with some z(t). The use of external time-varying covariates could be a
topic for future work, while the use of internal time-varying covariates is, as
usual, expected to be problematic, see e.g. Aalen et al (2008). A weighted ap-
proach, as discussed in the following paragraphs, might then be the favourable
approach.

2.2.2 Validity of the Datta-Satten result in inverse probability of treatment
weighted multi-state models

Let us now consider a situation where we want to estimate the marginal effect
of a single baseline covariate a, being an element in z, for example a binary
treatment variable with values 0 or 1, on state occupation probabilities. The
remaining covariates in z, which we denote c, can then be marginalised out
using so-called propensity score or IPT weights (Rosenbaum, 1987; Robins
et al, 2000). The weights are used to model a counterfactual scenario, where
treatment assignment is no longer dependent on covariates, or in other words;
a scenario where treatment is randomised. When such weights are estimated,
e.g. using logistic regression, inference on the marginal effect of treatment can
be performed by analysing the weighted data set.

If one accepts that the IPT weighting procedure simply is a change of prob-
ability measure from the observed measure to a randomised treatment measure
(see for example Røysland (2011)), then the validity of the Datta-Satten re-
sult on IPT weighted multi-state models is trivial. One can also use a similar
argument as in Datta and Satten (2002), who prove the validity of (1) without
Markov assumptions, for IPC weighted estimates under dependent censoring.
Here, censoring probabilities were calculated using the Aalen additive model.
Other models for the censoring mechanism could also be used, for example
pooled logistic regression as in Robins et al (2000).

Pointwise confidence intervals for occupation probabilities in weighted mod-
els can be estimated in the lines of Andersen et al (1993), p. 294, and Datta and
Satten (2002). In the latter paper, they suggest using bootstrapping for sim-
plicity. Another alternative is to use conservative robust sandwich estimates
of the variance (Cole et al, 2007). For example, for Nelson-Aalen or Cox pro-
portional hazards estimates of the transition intensities, the robust estimated
covariance matrices from Lin and Wei (1989) can be plugged into the formula
for the covariance matrix for state probabilities in Andersen et al (1993), Eq.
4.4.17. Similar robust sandwich type estimators for the covariance matrix can
be used also for the additive hazards model, see for example Scheike (2002).

Given that the model for the treatment weights are correctly specified, IPT
weighting will reduce to a regression model with a single, typically binary,
covariate as discussed earlier. One can then also analyse the two subsets of the
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weighted data separately, for treatment equal to 0 and 1. This will correspond
to plugging weighted Nelson-Aalen estimates for the transition intensities into
(1) in accordance with Datta and Satten (2001).

When the target of inference is the difference between two state occupation
probabilities for state j, π1

j (t) and π0
j (t), for two disjoint groups 0 and 1, the

standard errors can be obtained by

SE
[
π̂1
j (t)− π̂0

j (t)
]

=
√

V̂ar
(
π̂1
j (t)

)
+ V̂ar

(
π̂0
j (t)

)
.

V̂ar
(
π̂gj (t)

)
is the estimated variance of the estimated state occupation prob-

abilities π̂gj (t) for group g (g = 0, 1). The estimated state occupation proba-
bilities are given as

π̂gj (t) =
S∑
i=1

πgi (0)P̂ gij(0, t),

linear combination of the estimated transition probabilities. Thus the variance
is had by

V̂ar
(
π̂gj (t)

)
=

S∑
i=1

S∑
h=1

πgi (0)πgh(0)Ĉov
(
P̂ gij(0, t), P̂

g
hj(0, t)

)
.

The estimated covariances on the right side can be had from Greenwood-type
formulas given by (4.4.17)-(4.4.20) in Andersen et al (1993). Alternatively,
V̂ar

(
π̂gj (t)

)
may be obtained with bootstrapping. Following the arguments

from earlier, these variances could be estimated in a similar manner for co-
variate adjusted models, by instead plugging in estimates of the covariate
specific covariance matrix in formula (4.4.17) in Andersen et al (1993), and
for inverse probability weighted models by using robust estimators described
above or by bootstrapping.

Note again that we only have considered baseline treatment and weights.
For similar reasons as for the hazard regression models, if we have time-
dependent covariates, that is; a time-dependent treatment and/or confounders;
analysis will be more involved. However, a convenient feature of multi-state
models is that time-dependent treatment variables can be represented in the
form of additional states in S, making the multi-state models serve as a joint
model of the treatment and outcome processes (Andersen and Keiding, 2002).
See e.g. Keiding et al (2001) and Gran et al (2008) for examples of such multi-
state models. A more straightforward way of analysing the effects of such
time-dependent treatments would then be to use simulations or so-called g-
computation on this system, as suggested in Keiding et al (2001) and Gran
et al (2015).
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2.3 The landmark Aalen-Johansen estimator

The landmark Aalen-Johansen estimator, as suggested by Putter and Spitoni
(2018), is given by

P̂LMAJ
lk (s, t) = π̂(LM)(s)

∏
s<u≤t

(
I + ∆Â(LM)(u)

)
, (3)

for landmark state l and k ∈ S. Â(LM)(t) is a matrix of Nelson-Aalen estimates
for the cumulative transition intensities, estimated from the landmark data
consisting of only the individuals present in state l at time s. π̂(LM)(s) is a
1×S vector with l’th element, π̂(LM)

l (s) equal to 1 and other elements 0. Putter
and Spitoni prove consistency of P̂LMAJ

lk (s, t) under the same assumptions
required for consistency of AJ estimates of occupation probabilities. This is a
consequence of the Datta-Satten result (Datta and Satten, 2001) and the fact
that state transition probabilities can be seen as state occupation probabilities
for a subsample of the full data or a so-called landmark data set. Similar to
the AJ estimator, standard errors for LMAJ estimates can be based on a
Greenwood type estimator (Glidden, 2002).

2.3.1 Landmarking to estimate covariate specific transition probabilities

By a similar argument as in Section 2.2, the estimator in (3) can be generalised
to

P̂LMAJ
lk (s, t|z) = π̂(LM)(s|z)

∏
s<u≤t

(
I + ∆Â(LM)(u|z)

)
, (4)

where π̂(LM)(s|z) is a vector with element π̂(LM)
l (s|z) ≡ 1, for any z, and

zero otherwise. Â(LM)(u|z) can be estimated by either Cox or Aalen hazard
regression based on the landmark data.

2.3.2 Inverse probability weighted landmarking to estimate transition
probabilities

Following the arguments in Section 2.2, a landmark approach to estimating
transition probabilities using inverse probability weighted data, will either re-
duce to the estimator in (4), with only one covariate (treatment a), or even
further, to the estimator in Equation 3, if the treatment variable is binary and
one performs separate analyses for the subsets of weighted data with a = 1 and
a = 0. Confidence intervals must however be estimated using robust methods
or bootstrap, as discussed in Section 2.2.

When the treatment variable a is binary, taking on the values 0 and 1; we
might fit the logistic regression model

logitPr(a|c) = βT c
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for the weights. Using this model, it is simple to estimate Pr(ai = 1|ci), the
conditional probabilities of exposure ai = 1, for all individuals i = 1, ..., n
given their covariates ci. This probability is often called the propensity score.
Individuals with exposure ai = 1 are assigned the IPT weight corresponding
to wi = 1/Pr(ai = 1|ci), while individuals with exposure ai = 0 receive the
weight corresponding to wi = 1/(1−Pr(ai = 1|ci)). One can also use stabilized
weights (Robins et al, 2000), corresponding to

wi = Pr(ai = 1)
Pr(ai = 1|ci)

when individual i is treated, and

wi = 1− Pr(ai = 1)
1− Pr(ai = 1|ci)

when individual i is untreated.
In the weighted data set, covariates are balanced so they are equally repre-

sented in both exposure groups. The aim is to mimic a scenario where exposure
is independent of covariates. In other words, if the model for the weights is
correctly specified, exposure can be seen as randomised in the weighted data
set. This is equivalent to comparing a scenario where everyone was exposed to
a scenario where no one was exposed. Given the three common causal assump-
tions (Hernan and Robins, 2018), the weighting procedure removes confounder
bias when estimating transition probabilities in observational studies.

3 A simulation study

Let us now consider a simulation study to verify the consistency of the LMAJ
estimator for transition probabilities in a non-Markov model with covariates.
This is done for estimation of transition intensities based on both Cox regres-
sion and IPT weighting. We simulate 10 000 individual multi-state trajectories
by first drawing initial states, baseline covariates and then consecutive transi-
tion times between a set of predefined states. Our simulation model has four
states; states 1-3 are non-absorbing and interconnected, while state 4 is ab-
sorbing and accessible from all other states as illustrated in Figure 1.

Every transition from state l to state k is associated with an intensity
αlk(t|a, c,Ht−). Exposure a has two levels, and the covariates c consists of a
dichotomous variable c1 and a continuous, exponentially distributed, variable
c2. Both covariates affect the probability of exposure, in addition to transition
intensities. The simulation was set up in such a way that transitions into state
3 and 4 from state 1, and into state 4 from state 3, were more likely the
more time previously spent in state 3. The opposite was true for transitions
from state 3 into state 1. See supplementary material for more details on data
generating algorithm and the corresponding R code.

For intensities that follow a Cox proportional hazards model, transition
times can be generated by giving a parametric specification of the baseline
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1 2

3 4

α12(t|a, c,Ht−)

Fig. 1 A multi-state model for simulation. The time dependent transition intensity between
state 1 and 2, α12(t|a, c, Ht−), depends on exposure a, other covariates c and history up
to just before time t, Ht−. Corresponding intensities are defined for all transitions, but not
shown.

hazard (Bender et al, 2005). Using a Weibull specification, the transition in-
tensities become

αlk(t|a, c,Ht−) = λlk(t|Ht−) exp(βlka+ θTlkc)νlktνlk−1. (5)

The function λlk(t|Ht−) influences the mean transition time and depends
on the past history of the transition and at-risk processes. For instance, some
transition intensities may depend on the number of earlier stays in specific
states or the length of certain stays, which violates the Markov assumption. νlk
influences both the mean and the shape of the distribution of transition times
(νlk = 1 equals exponential distribution). The data generating algorithm can
be summarised by the following: for n subjects we sample baseline covariates
c, exposure a conditional on c, start state X(0) = l from the states l ∈ {1, 2, 3}
and set the censoring time Tc = 1000. From the start state, potential sojourn
times for every possible transition j 6= l is generated. Let Ti be the minimum
of the potential sojourn times. The transition corresponding to the sojourn
time Ti is then chosen. We repeat this procedure as long as

∑
i Ti < Tc and a

transition into state 4 has yet to occur.
With our method for simulating non-Markov multi-state data, there are no

simple parameters representing the "true" transition probabilities to which we
can compare our estimates. Therefore, we create another data set by simulating
similar multi-state data as above, but for a large hypothetical cohort (n = 50
000) using fixed covariate values and/or exposure level, and then compare
empirical distributions from this data with the estimation results from the
main simulation.
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Empirical distribution (n = 14092)
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Fig. 2 Estimated conditional state transition probabilities based on Cox regression for the
full data set (upper left panel), Cox regression on the landmark sample (upper right panel)
and the true empirical distribution (lower left panel).

3.1 Covariate adjusted analysis

Consider now a simulated multi-state data set as described above. The data
were analysed by estimating conditional transition intensities using Cox pro-
portional hazards models, where we adjusted for exposure and the two other
covariates. Based on the estimated intensities, we calculated transition prob-
abilities for going from state 3 at time s = 100, for a given exposure a and
covariate values, c. More specifically, a = 1, c1 = 1 and c2 = 2. We calculated
both the LMAJ estimate and the traditional AJ estimate. To assess the re-
sults, we use a separate simulated data set where all subjects (n = 50 000)
were given the same exposure and covariate values as above. From this data
set, we calculate the empirical state distribution at each time-point (t ≥ 100),
of subjects observed in state 3 at s = 100. The estimated state transition
probabilities are displayed in Figure 2. We see that the landmark estimates
converge towards the true (empirical) state transition probability distribution,
while the traditional estimate, that relies on the Markov assumption, is heavily
biased.
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Unadjusted, landmark, a = 0 (n = 1410)
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Fig. 3 Estimated state transition probabilities from state 3 based on the inverse probability
of treatment weighted Aalen-Johansen estimator (upper left panel), the weighted landmark
Aalen-Johansen (upper right panel), the true empirical distribution (lower left panel) and
the unweighted landmark Aalen-Johansen (lower right panel).

3.2 Inverse probability of treatment weighted analysis

Let us now consider the same simulated data as before. However, to estimate
transition probabilities, we now use IPT weighted LMAJ and AJ estimators,
and a marginal unweighted LMAJ for comparison. To simulate the "true" state
transition probability distribution, we again used a separate simulated data
set where all subjects (n = 50 000) were given the same exposure regardless
of covariate values. From this data set, the empirical state distribution for
each time-point (t ≥ 100), of subjects observed in state 3 at s = 100, was
calculated. The estimated transition probabilities are shown in Figure 3.

Again, the traditional AJ approach is clearly biased compared to the true
empirical results. However, the consequences of failing to perform a weighted
analysis (IPTW) are not so clear from this figure. In Figure 4 we have therefore
simulated from an identical setup, but with three different sample sizes n and
focus on the transition probabilities from state 3 to state 1. The transition
probability is clearly underestimated in the unweighted case.
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Transition probability from state 3 to state 1
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Fig. 4 Transition probabilities from state 3 to state 1, P31(100, t), simulated for three
different sample sizes n. Inverse probability of treatment weighted landmark Aalen-Johansen
(LMAJ) estimates (red) are compared with unweighted LMAJ (green) and the true empirical
transition probability (black).

4 An application to a multi-state model for work, education and
health-related absence

To further illustrate the LMAJ estimator, and corresponding estimators af-
ter covariate adjustment and weighting, using a real data set, we consider a
multi-state model for work, education and health-related absence for young
men between the age 21-35. The model, shown in Figure 5, consists of five dif-
ferent states; (1) work, (2) unemployment, (3) sick leave, (4) education (above
high school) and (5) disability, where disability is considered an absorbing
state. Direct transition from work and education to disability is not allowed
by regulations. The model has been analysed before, with the purpose of es-
timating the effect of high school completion within the age of 23, but then
only with regards to state occupation probabilities (Hoff et al, 2018).

The data consists of information on all males born in Norway between
1971 and 1976 who attended general studies at high school (n = 52128).
Completing the general studies track leads to admission rights into higher
education. Students usually start high school the autumn the year they turn 16
and, if following a normal progression, graduate in spring nearly 3 years later.
Those who do not complete within a normal time frame, have the possibility to
complete at a later time point. To assess the effect of completion within the age
of 21, the follow-up period was defined to go from July 1st the year students
turned 21 (1992 – 1997) and until December 31st 2006 – 2011 (14.5 years).
In this period, notifications in national registries of employment, education
and welfare benefits were used to construct individual multi-state trajectories.
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1. Work 3. Sick leave

4. Education 2. Unemployment

5. Disability

Fig. 5 A multi-state model for work, education and health-related absence.

We also had access to several baseline covariates on an individual level from
national registries. These will be described in Sections 4.2 and 4.3 below.

There are several potential problems with assuming that the model in Fig-
ure 5 is Markov when analysing these data. For example, it is likely that
subjects who have been in work for a longer period have more stable posi-
tions than newly employed. Similarly, individuals who have been sick for an
extended period, are likely to have lower probability for exiting sick leave from
a given time-point than someone who just recently became ill. There are also
regulations limiting the duration of the different welfare benefits. In the sec-
tions that follow, we will compare results from the landmark approaches for
estimating state transition probabilities, allowing for non-Markov data, with
the traditional Markov-based approach.

4.1 Unadjusted analysis

Let us consider a landmark subsample of individuals on sick leave. The land-
mark time is an arbitrary autumn time-point five years after inclusion July 1st
(five years and 100 days after). We start by comparing (cumulative) transition
intensities in the landmark subsample with the full data, shown in Figure 6.
Note that we here analyse high school completers and non-completers together.
Judging by the estimated transition intensities, it is clear that the landmark
subsample differs considerably from the full cohort in terms of transition in-
tensities, which indicates that the Markov assumption is not valid, but there
are a few transitions where intensities are more similar, indicating Markov
properties for those transitions. As we see in the upper left panel of Figure 6,
average stay in other states before transitioning to work is much longer (lower
transition intensity) in the landmark subsample compared to the full cohort.
For transitions to unemployment (upper right panel), transition intensities
are more similar for the landmark subsample and the full cohort, apart from
for work to unemployment where it is nearly doubled in the landmark sam-
ple. Large differences in transitions intensities can be seen for the remaining
transitions.

Corresponding transition probabilities from sick leave to work, as estimated
by the LMAJ estimator and the traditional AJ estimator, together with 95%
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Fig. 6 Cumulative transition intensities starting at the landmark time-point, 5 years and
100 days after original study start. Full drawn lines are Nelson-Aalen estimates based on the
landmark sample of individuals starting on sick leave (LM), while dotted lines are traditional
Nelson-Aalen estimates based on the full cohort (FC).



Landmark transition probabilities in non-Markov multi-state models 17

High school completion

Years since inclusion

P
ro

ba
bi

lit
y

6 7 8 9 10 11 12 13 14

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

LMAJ: P31
1

AJ: P31
1

Non−completion

Years since inclusion

P
ro

ba
bi

lit
y

6 7 8 9 10 11 12 13 14

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

LMAJ: P31
0

AJ: P31
0

Fig. 7 Transition probabilities from sick leave (state 3) to work (state 1), for high school
completers and non-completers respectively, as estimated by Landmark Aalen-Johansen
(LMAJ) and traditional Aalen-Johansen (AJ) estimators.

pointwise confidence intervals based on the Greenwood formula, are shown in
Figure 7. See also Figure A.1 in online supplementary material for estimated
transition probabilities from sick leave to all the four other states. The size of
the full cohort and the landmark subsample differ substantially, with 52128
versus 871 individuals, which is reflected in wider confidence intervals for the
LMAJ estimates.

The difference in transition probabilities between high school completers
and non-completers, Pr(X(t) = 1|X(s) = 3, a = 1) − Pr(X(t) = 1|X(s) =
3, a = 0), based on the LMAJ estimator is shown in the left panel of Figure
8. Here a = 1 corresponds to high school completion and a = 0 to non-
completion. Also included in the plot are 95% pointwise confidence intervals.
The transition probability from sick leave to work increases about 10 percent-
age points more for high school completers than non-completers in the months
after the landmark time-point and this difference seems to remain throughout
the rest of the follow-up period.

4.2 Covariate adjusted analysis

Let us now consider the use of Cox regression together with the LMAJ esti-
mator, in order to estimate covariate dependent transition probabilities. Cox
proportional hazards models were fitted for all transitions jointly, using the
stratified Cox regression approach suggested by de Wreede et al (2011). The
models were fitted to the landmark sample with a dichotomous exposure vari-
able for completion versus non-completion and a categorical variable based on
IQ test scores. Test scores are registered during Norwegian military conscript
examinations and available to us from The Armed Forces Personnel Data
Base. The scores are recorded on the standard nine scale (Stanine)(Sundet
et al, 2004) ranging from 1 to 9. A test score of 1 indicates an IQ score below
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Fig. 8 The effect of high school completion as the difference in transition probabilities
from sick leave (state 3) to work (state 1), for high school completers versus non-completers.
Unadjusted landmark Aalen-Johansen (LMAJ) estimated with 95% confidence intervals (left
panel) and comparison of unadjusted LMAJ estimates and inverse probability of treatment
(IPT) weight adjusted LMAJ estimates (right panel).

74 on the traditional Wechsler scale (Wechsler, 1955), 5 is between 96 and
104 while 9 is above 126. We divided the IQ test scores into three levels; 1-3
(low), 4-6 (middle) and 7-9 (high), which we adjusted for in Cox models for
every transition. Using the estimates from the Cox regression as suggested in
Section 2.1, we calculated cumulative transition intensities separately for all
combinations of exposure and IQ level, six in total. These were then plugged
into the matrix product formula. In Figure 9, we can see how the transition
probabilities from sick leave to work are higher with higher IQ level and for
high school completers compared to non-completers. The two highest IQ lev-
els, 4-6 and 7-9, exhibit coinciding transition probabilities, while they are more
reduced for the lowest level 1-3.

4.3 Inverse probability of treatment weighted analysis

In addition to IQ scores, we had access to several other baseline covariates,
including BMI, military eligibility (mental and physical health) evaluation,
parental education level, parental income, maternal marital status, parental
disability history, history of childhood chronic disease, regional unemployment
rate, year of birth and maternal age at birth (≤ or > 35). The data come from
several Norwegian population-wide registries. Personal identification numbers
allowed for linking within study subjects and between subjects and parents
across several registries: Statistics Norway’s events database on employment
and welfare, FD-Trygd, The National Education Database, The Armed Forces
Personnel Data Base and the registries of the Norwegian Labour and Welfare
Administration. For a further description of these covariates see Hoff et al
(2018).
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Fig. 9 Estimated transition probabilities from sick leave (state 3) to work (state 1) for high
school completers (left panel) and non-completers (right panel), for different levels of IQ;
1-3 (low), 4-6 (middle) and 7-9 (high). Dotted lines are 95% confidence intervals.

The covariates mentioned above are thought to be confounders between
the exposure and outcomes (state transitions). So to make the comparison of
completion and non-completion fair, we wanted to adjust for all covariates.
Using regression to achieve this, estimated transition probabilities are condi-
tional on covariates being fixed at specific values, but the overall effects of
these covariates can be difficult to summarise in a multi-state setting. There-
fore, we estimated the marginal effect of high school completion using IPT
weighting. Here, the weights mimic a scenario where we can compare every-
one, regardless of covariates, completing high school with the situation where
no one completed. First, we modelled high school completion using logistic re-
gression, with the mentioned covariates as explanatory variables. Then we used
this model to calculate each individual’s probability of either completion or
non-completion according to what was observed for a given individual. Lastly,
each individual was assigned a weight that is the inverse of this probability.
The weighted data set was analysed separately for each exposure group by
performing weighted Nelson-Aalen estimation of transition intensities. IPTW
estimates for transition probability differences are included in the right panel
of Figure 8, together with the corresponding unadjusted results, and we see
that the weighting reduces the estimated transition probability differences with
several percentage points.

5 Discussion

In this paper, we have studied the landmark Aalen-Johansen estimator for
transition probabilities under deviations from the Markov assumption. The use
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of regression models and inverse probability weights when modelling transition
intensities, allowed us to adjust for covariates in the analyses, and simulation
studies confirmed that the landmark approach was still consistent.

Our multi-state model for work, education and health-related absence clearly
demonstrated deviations from the Markov property. It is reasonable to believe
that this would remain a problem with these types of data, even if one tries
to partition the state space even further. Transitions from states that are very
heterogeneous, in the sense that some individuals are characterised by com-
pletely different transition intensities than other types of individuals, are prone
to have non-Markov properties. For example, a pooled state with all types of
sick leave would exhibit such heterogeneity. Some individuals experience long
stays with possibly chronic illness, while others make a short visit with less
severe conditions. It is reasonable to assume that individuals on longer visits
are overrepresented in a landmark sample from a heterogeneous state. In the
traditional AJ estimator, subjects not on sick leave at time s, who transition
into sick leave after the landmark time-point, will enter the risk set and thereby
contribute to estimation. From the cumulative transition intensities plots in
Figure 6, it is clear that the population as a whole is much more likely to have
short-term visits in sick leave than the landmark subset.

The IPT weights mimic a scenario where the exposure is independent of
the included covariates. This is achieved by rebalancing the covariates in the
two groups, completion and non-completion. If these covariates account for
all confounding factors, this corresponds to a scenario where the exposure is
randomised in the target population. Since the landmark analyses in Section
4.3 were conditioned on being on sick leave at time s, we can assume that the
two exposure groups are more balanced in terms of covariates in the landmark
sample than is the case for the full cohort. The more evenly distributed the
covariate values are across exposures, the less impact weighting will have on
the results.

Using the LMAJ approach, we do not have to assume that the model
is Markov to estimate transition probabilities. At the price of having lower
precision, we obtain consistent estimates. This approach therefore typically
requires data sets with large sample size. In multi-state models with only minor
deviances from the Markov property, the higher uncertainty of the landmark
estimator could make the standard method preferable (Putter and Spitoni,
2018).

The concept of landmarking could potentially be extended to allow esti-
mation of transition probabilities under even stricter conditioning; not only
conditioning on a specific state at time s, but also on the further past, such
as previous number of visits or days spent in a specific state. Any such condi-
tioning would, as before, come with the cost of decreased power and a need for
even larger data sources. However, population-wide registry data, such as the
data analysed in this paper, is a good example of data where such approaches
are highly favourable.
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