Vis enkel innførsel

dc.contributor.authorHammer, Stine Eriksen
dc.contributor.authorDaae, Hanne Line
dc.contributor.authorKåsin, Karoline
dc.contributor.authorHelmersmo, Kristin
dc.contributor.authorSimensen, Vincent
dc.contributor.authorSkaugset, Nils Petter
dc.contributor.authorHassel, Erlend
dc.contributor.authorZardin, Erika
dc.date.accessioned2024-06-10T07:11:07Z
dc.date.available2024-06-10T07:11:07Z
dc.date.created2023-02-27T12:06:52Z
dc.date.issued2023
dc.identifier.citationJournal of Occupational and Environmental Hygiene. 2023, 20 (3-4), 170-182.
dc.identifier.issn1545-9624
dc.identifier.urihttps://hdl.handle.net/11250/3133188
dc.description.abstractDiesel engine exhaust (DE) consists of a complex mixture of gases and aerosols, originating from sources such as engines, turbines, and power generators. It is composed of a wide range of toxic compounds ranging from constituents that are irritating to those that are carcinogenic. The purposes of this work were to characterize DE originating from different engine types on a ship operating offshore and to quantify the potential exposure of workers on the ship’s helicopter deck to select DE compounds. Sampling was conducted on a Norwegian Nansen-class frigate that included helicopter operations. Frigate engines and generators were fueled by marine diesel oil, while the helicopter engine was fueled by high flash point kerosene-type aviation fuel. Exhaust samples were collected directly from the stack of the diesel engine and one of the diesel generator exhaust stacks, inside a gas turbine exhaust stack, and at the exhaust outlet of the helicopter. To characterize the different exhaust sources, non-targeted screening of volatile and semi-volatile organic compounds was performed for multiple chemical classes. Some of the compounds detected at the sources are known irritants, such as phthalic anhydride, 2,5-dyphenyl-p-benzoquinone, styrene, cinnoline, and phenyl maleic anhydride. The exhaust from the diesel engine and diesel generator was found to contain the highest amounts of particulate matter and gaseous compounds, while the gas turbine had the lowest emissions. Personal exposure samples were collected outdoors in the breathing zone of a helicopter deck operator over nine working shifts, simultaneously with stationary measurements on the helicopter deck. Elemental carbon, nitrogen dioxide, and several volatile organic compounds are known to be present in DE, such as formaldehyde, acrolein, and phenol were specifically targeted. Measured DE exposures of the crew on the helicopter deck were variable, but less than the current European occupational exposure limits for all compounds, except elemental carbon, in which concentration varied between 0.5 and 37 µg/m3 over nine work shifts. These findings are among the first published for this type of working environment.
dc.description.abstractChemical characterization of combustion engine exhaust and assessment of helicopter deck operator occupational exposures on an offshore frigate class ship
dc.language.isoeng
dc.titleChemical characterization of combustion engine exhaust and assessment of helicopter deck operator occupational exposures on an offshore frigate class ship
dc.title.alternativeChemical characterization of combustion engine exhaust and assessment of helicopter deck operator occupational exposures on an offshore frigate class ship
dc.typePeer reviewed
dc.typeJournal article
dc.description.versionpublishedVersion
dc.source.pagenumber170-182
dc.source.volume20
dc.source.journalJournal of Occupational and Environmental Hygiene
dc.source.issue3-4
dc.identifier.doi10.1080/15459624.2023.2180150
dc.identifier.cristin2129599
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode1


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel