Pulmonary toxicity of Fe2O3, ZnFe2O4, NiFe2O4 and NiZnFe4O8 nanomaterials. Inflammation and DNA strand breaks
Hadrup, Niels; Saber, Anne T.; Kyjovska, Zdenka O.; Jacobsen, Nicklas R.; Vippola, Minnamari; Sarlin, Essi; Ding, Yaobo; Schmid, Otmar; Wallin, Håkan; Jensen, Keld A. ; Vogel, Ulla
Peer reviewed, Journal article
Published version
Date
2019Metadata
Show full item recordCollections
Original version
10.1016/j.etap.2019.103303Abstract
Exposure to metal oxide nanomaterials potentially occurs at the workplace. We investigated the toxicity of two Fe-oxides: Fe2O3 nanoparticles and nanorods; and three MFe2O4 spinels: NiZnFe4O8, ZnFe2O4, and NiFe2O4 nanoparticles. Mice were dosed 14, 43 or 128 μg by intratracheal instillation. Recovery periods were 1, 3, or 28 days. Inflammation – neutrophil influx into bronchoalveolar lavage (BAL) fluid – occurred for Fe2O3 rods (1 day), ZnFe2O4 (1, 3 days), NiFe2O4 (1, 3, 28 days), Fe2O3 (28 days) and NiZnFe4O8 (28 days). Conversion of mass-dose into specific surface-area-dose showed that inflammation correlated with deposited surface area and consequently, all these nanomaterials belong to the so-called low-solubility, low-toxicity class. Increased levels of DNA strand breaks were observed for both Fe2O3 particles and rods, in BAL cells three days post-exposure. To our knowledge, this is, besides magnetite (Fe3O4), the first study of the pulmonary toxicity of MFe2O4 spinel nanomaterials. Pulmonary toxicity of Fe2O3, ZnFe2O4, NiFe2O4 and NiZnFe4O8 nanomaterials. Inflammation and DNA strand breaks