Vis enkel innførsel

dc.contributor.authorLuyapan, Jennifer
dc.contributor.authorJi, Xuemei
dc.contributor.authorLi, Siting
dc.contributor.authorXiao, Xiangjun
dc.contributor.authorZhu, Dakai
dc.contributor.authorDuell, Eric J.
dc.contributor.authorChristiani, David C.
dc.contributor.authorSchabath, Matthew B.
dc.contributor.authorArnold, Susanne M.
dc.contributor.authorZienolddiny, Shanbeh
dc.contributor.authorBrunnström, Hans
dc.contributor.authorMelander, Olle
dc.contributor.authorThornquist, Mark D.
dc.contributor.authorMacKenzie, Todd A.
dc.contributor.authorAmos, Christopher I.
dc.contributor.authorGui, Jiang
dc.date.accessioned2022-04-25T10:54:34Z
dc.date.available2022-04-25T10:54:34Z
dc.date.created2020-11-03T19:53:53Z
dc.date.issued2020
dc.identifier.issn1755-8794
dc.identifier.urihttps://hdl.handle.net/11250/2992500
dc.description.abstractBackground Genome-wide association studies (GWAS) have proven successful in predicting genetic risk of disease using single-locus models; however, identifying single nucleotide polymorphism (SNP) interactions at the genome-wide scale is limited due to computational and statistical challenges. We addressed the computational burden encountered when detecting SNP interactions for survival analysis, such as age of disease-onset. To confront this problem, we developed a novel algorithm, called the Efficient Survival Multifactor Dimensionality Reduction (ES-MDR) method, which used Martingale Residuals as the outcome parameter to estimate survival outcomes, and implemented the Quantitative Multifactor Dimensionality Reduction method to identify significant interactions associated with age of disease-onset. Methods To demonstrate efficacy, we evaluated this method on two simulation data sets to estimate the type I error rate and power. Simulations showed that ES-MDR identified interactions using less computational workload and allowed for adjustment of covariates. We applied ES-MDR on the OncoArray-TRICL Consortium data with 14,935 cases and 12,787 controls for lung cancer (SNPs = 108,254) to search over all two-way interactions to identify genetic interactions associated with lung cancer age-of-onset. We tested the best model in an independent data set from the OncoArray-TRICL data. Results Our experiment on the OncoArray-TRICL data identified many one-way and two-way models with a single-base deletion in the noncoding region of BRCA1 (HR 1.24, P = 3.15 × 10–15), as the top marker to predict age of lung cancer onset. Conclusions From the results of our extensive simulations and analysis of a large GWAS study, we demonstrated that our method is an efficient algorithm that identified genetic interactions to include in our models to predict survival outcomes.
dc.language.isoeng
dc.titleA new efficient method to detect genetic interactions for lung cancer GWAS
dc.typePeer reviewed
dc.typeJournal article
dc.description.versionpublishedVersion
dc.source.volume13:162
dc.source.journalBMC Medical Genomics
dc.identifier.doi10.1186/s12920-020-00807-9
dc.identifier.cristin1844672
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode1


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel